Belle II Software development
Utility.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <mva/utility/Utility.h>
10#include <mva/utility/DataDriven.h>
11#include <mva/methods/PDF.h>
12#include <mva/methods/Reweighter.h>
13#include <mva/methods/Trivial.h>
14#include <mva/methods/Combination.h>
15
16#include <framework/logging/Logger.h>
17
18#include <framework/utilities/MakeROOTCompatible.h>
19
20#include <boost/algorithm/string/predicate.hpp>
21#include <boost/property_tree/xml_parser.hpp>
22
23#include <cstdlib>
24#include <iostream>
25#include <chrono>
26#include <string>
27#include <regex>
28#include <fstream>
29
30using namespace Belle2::MVA;
31
32void Utility::download(const std::string& identifier, const std::string& filename, int experiment, int run, int event)
33{
34 Belle2::EventMetaData emd(event, run, experiment);
36 if (boost::ends_with(filename, ".root")) {
37 Belle2::MVA::Weightfile::saveToROOTFile(weightfile, filename);
38 } else if (boost::ends_with(filename, ".xml")) {
39 Belle2::MVA::Weightfile::saveToXMLFile(weightfile, filename);
40 } else {
41 std::cerr << "Unknown file extension, fallback to xml" << std::endl;
42 Belle2::MVA::Weightfile::saveToXMLFile(weightfile, filename);
43 }
44}
45
46void Utility::upload(const std::string& filename, const std::string& identifier, int exp1, int run1, int exp2, int run2)
47{
48 Belle2::IntervalOfValidity iov(exp1, run1, exp2, run2);
49 Belle2::MVA::Weightfile weightfile;
50 if (boost::ends_with(filename, ".root")) {
51 weightfile = Belle2::MVA::Weightfile::loadFromROOTFile(filename);
52 } else if (boost::ends_with(filename, ".xml")) {
53 weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
54 } else {
55 std::cerr << "Unknown file extension, fallback to xml" << std::endl;
56 weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
57 }
58 Belle2::MVA::Weightfile::saveToDatabase(weightfile, identifier, iov);
59}
60
61void Utility::upload_array(const std::vector<std::string>& filenames, const std::string& identifier, int exp1, int run1, int exp2,
62 int run2)
63{
64 Belle2::IntervalOfValidity iov(exp1, run1, exp2, run2);
65
66 std::vector<Belle2::MVA::Weightfile> weightfiles;
67 for (const auto& filename : filenames) {
68
69 Belle2::MVA::Weightfile weightfile;
70 if (boost::ends_with(filename, ".root")) {
71 weightfile = Belle2::MVA::Weightfile::loadFromROOTFile(filename);
72 } else if (boost::ends_with(filename, ".xml")) {
73 weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
74 } else {
75 std::cerr << "Unknown file extension, fallback to xml" << std::endl;
76 weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
77 }
78 weightfiles.push_back(weightfile);
79 }
80 Belle2::MVA::Weightfile::saveArrayToDatabase(weightfiles, identifier, iov);
81}
82
83void Utility::extract(const std::string& filename, const std::string& directory)
84{
85
87 auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
88 auto weightfile = Weightfile::load(filename);
89 weightfile.setRemoveTemporaryDirectories(false);
90 setenv("TMPDIR", directory.c_str(), 1);
91 GeneralOptions general_options;
92 weightfile.getOptions(general_options);
93 auto expertLocal = supported_interfaces[general_options.m_method]->getExpert();
94 expertLocal->load(weightfile);
95
96}
97
98std::string Utility::info(const std::string& filename)
99{
100
102 auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
103 auto weightfile = Weightfile::load(filename);
104 GeneralOptions general_options;
105 weightfile.getOptions(general_options);
106
107 auto specific_options = supported_interfaces[general_options.m_method]->getOptions();
108 specific_options->load(weightfile.getXMLTree());
109
110 boost::property_tree::ptree temp_tree;
111 general_options.save(temp_tree);
112 specific_options->save(temp_tree);
113 std::ostringstream oss;
114
115#if BOOST_VERSION < 105600
116 boost::property_tree::xml_writer_settings<char> settings('\t', 1);
117#else
118 boost::property_tree::xml_writer_settings<std::string> settings('\t', 1);
119#endif
120 boost::property_tree::xml_parser::write_xml(oss, temp_tree, settings);;
121
122 return oss.str();
123
124}
125
126bool Utility::available(const std::string& filename, int experiment, int run, int event)
127{
128
129 try {
130 auto weightfile = Weightfile::load(filename, Belle2::EventMetaData(event, run, experiment));
131 return true;
132 } catch (...) {
133 return false;
134 }
135
136}
137
138void Utility::expert(const std::vector<std::string>& filenames, const std::vector<std::string>& datafiles,
139 const std::string& treename,
140 const std::string& outputfile, int experiment, int run, int event, bool copy_target)
141{
142
143 TFile file(outputfile.c_str(), "RECREATE");
144 file.cd();
145 TTree tree("variables", "variables");
146
148 auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
149
150 for (auto& filename : filenames) {
151
152 Belle2::EventMetaData emd(event, run, experiment);
153 auto weightfile = Weightfile::load(filename, emd);
154
155 GeneralOptions general_options;
156 weightfile.getOptions(general_options);
157
158 general_options.m_treename = treename;
159 // Override possible restriction of number of events in training
160 // otherwise this would apply to the expert as well.
161 general_options.m_max_events = 0;
162
163 auto expertLocal = supported_interfaces[general_options.m_method]->getExpert();
164 expertLocal->load(weightfile);
165
166 bool isMulticlass = general_options.m_nClasses > 2;
167
168 // define if target variables should be copied
169 if (not copy_target) {
170 general_options.m_target_variable = std::string();
171 }
172
173 general_options.m_datafiles = datafiles;
174 ROOTDataset data(general_options);
175
176 std::vector<TBranch*> branches;
177 //create the output branches
178 if (not isMulticlass) {
179 float result = 0;
180 std::string branchname = Belle2::MakeROOTCompatible::makeROOTCompatible(filename);
181 branches.push_back(tree.Branch(branchname.c_str(), &result, (branchname + "/F").c_str()));
182 std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
183
184 auto results = expertLocal->apply(data);
185 std::chrono::high_resolution_clock::time_point stop = std::chrono::high_resolution_clock::now();
186 std::chrono::duration<double, std::milli> application_time = stop - start;
187 B2INFO("Elapsed application time in ms " << application_time.count() << " for " << general_options.m_identifier);
188 for (auto& r : results) {
189 result = r;
190 branches[0]->Fill();
191 }
192
193 } else {
194 float result = 0;
195 for (unsigned int iClass = 0; iClass < general_options.m_nClasses; ++iClass) {
196 std::string branchname = Belle2::MakeROOTCompatible::makeROOTCompatible(filename + "_" + std::to_string(iClass));
197 branches.push_back(tree.Branch(branchname.c_str(), &result, (branchname + "/F").c_str()));
198 }
199 std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
200 auto results = expertLocal->applyMulticlass(data);
201 std::chrono::high_resolution_clock::time_point stop = std::chrono::high_resolution_clock::now();
202 std::chrono::duration<double, std::milli> application_time = stop - start;
203 B2INFO("Elapsed application time in ms " << application_time.count() << " for " << general_options.m_identifier);
204 for (auto& r : results) {
205 for (unsigned int iClass = 0; iClass < general_options.m_nClasses; ++iClass) {
206 result = r[iClass];
207 branches[iClass]->Fill();
208 }
209 }
210
211 }
212
213
214 if (not general_options.m_target_variable.empty()) {
215 std::string branchname = Belle2::MakeROOTCompatible::makeROOTCompatible(filename + "_" +
216 general_options.m_target_variable);
217 float target = 0;
218 auto target_branch = tree.Branch(branchname.c_str(), &target, (branchname + "/F").c_str());
219 auto targets = data.getTargets();
220 for (auto& t : targets) {
221 target = t;
222 target_branch->Fill();
223 }
224 }
225 }
226
227 tree.SetEntries();
228 file.Write("variables");
229
230}
231
232void Utility::save_custom_weightfile(const GeneralOptions& general_options, const SpecificOptions& specific_options,
233 const std::string& custom_weightfile, const std::string& output_identifier)
234{
235 std::ifstream ifile(custom_weightfile);
236 if (!(bool)ifile) {
237 B2FATAL("Input weight file: " << custom_weightfile << " does not exist!");
238 }
239
240 Weightfile weightfile;
241 weightfile.addOptions(general_options);
242 weightfile.addOptions(specific_options);
243 weightfile.addFile(general_options.m_identifier + "_Weightfile", custom_weightfile);
244 std::string output_weightfile(custom_weightfile);
245 if (!output_identifier.empty()) {
246 std::regex to_replace("(\\.\\S+$)");
247 std::string replacement = "_" + output_identifier + "$0";
248 output_weightfile = std::regex_replace(output_weightfile, to_replace, replacement);
249 }
250 Weightfile::save(weightfile, output_weightfile);
251}
252
253void Utility::teacher(const GeneralOptions& general_options, const SpecificOptions& specific_options,
254 const MetaOptions& meta_options)
255{
256 unsigned int number_of_enabled_meta_trainings = 0;
257 if (meta_options.m_use_splot)
258 number_of_enabled_meta_trainings++;
259 if (meta_options.m_use_sideband_subtraction)
260 number_of_enabled_meta_trainings++;
261 if (meta_options.m_use_reweighting)
262 number_of_enabled_meta_trainings++;
263
264 if (number_of_enabled_meta_trainings > 1) {
265 B2ERROR("You enabled more than one meta training option. You can only use one (sPlot, SidebandSubstraction or Reweighting)");
266 return;
267 }
268
269 if (meta_options.m_use_splot) {
270 teacher_splot(general_options, specific_options, meta_options);
271 } else if (meta_options.m_use_sideband_subtraction) {
272 teacher_sideband_subtraction(general_options, specific_options, meta_options);
273 } else if (meta_options.m_use_reweighting) {
274 teacher_reweighting(general_options, specific_options, meta_options);
275 } else {
276 ROOTDataset data(general_options);
277 teacher_dataset(general_options, specific_options, data);
278 }
279}
280
281
282std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_dataset(GeneralOptions general_options,
283 const SpecificOptions& specific_options,
284 Dataset& data)
285{
286 if (general_options.m_method.empty()) {
287 general_options.m_method = specific_options.getMethod();
288 } else {
289 if (general_options.m_method != specific_options.getMethod()) {
290 B2ERROR("The method specified in the general options is in conflict with the provided specific option:" << general_options.m_method
291 << " " << specific_options.getMethod());
292 }
293 }
295 auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
296 if (supported_interfaces.find(general_options.m_method) != supported_interfaces.end()) {
297 auto teacherLocal = supported_interfaces[general_options.m_method]->getTeacher(general_options, specific_options);
298 std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
299 auto weightfile = teacherLocal->train(data);
300 std::chrono::high_resolution_clock::time_point stop = std::chrono::high_resolution_clock::now();
301 std::chrono::duration<double, std::milli> training_time = stop - start;
302 B2INFO("Elapsed training time in ms " << training_time.count() << " for " << general_options.m_identifier);
303 Weightfile::save(weightfile, general_options.m_identifier);
304 auto expertLocal = supported_interfaces[general_options.m_method]->getExpert();
305 expertLocal->load(weightfile);
306 return expertLocal;
307 } else {
308 B2ERROR("Interface doesn't support chosen method" << general_options.m_method);
309 throw std::runtime_error("Interface doesn't support chosen method" + general_options.m_method);
310 }
311}
312
313std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_splot(const GeneralOptions& general_options,
314 const SpecificOptions& specific_options,
315 const MetaOptions& meta_options)
316{
317
318 GeneralOptions data_general_options = general_options;
319 data_general_options.m_target_variable = "";
320 if (meta_options.m_splot_combined)
321 data_general_options.m_identifier = general_options.m_identifier + "_splot.xml";
322 ROOTDataset data_dataset(data_general_options);
323 // Reset target variable so that it shows up in the weightfile at the end
324 data_general_options.m_target_variable = general_options.m_target_variable;
325
326 GeneralOptions discriminant_general_options = general_options;
327 discriminant_general_options.m_target_variable = "";
328 discriminant_general_options.m_variables = {meta_options.m_splot_variable};
329 ROOTDataset discriminant_dataset(discriminant_general_options);
330 // Reset target variable so that it shows up in the weightfile at the end
331 discriminant_general_options.m_target_variable = general_options.m_target_variable;
332
333 GeneralOptions mc_general_options = general_options;
334 mc_general_options.m_datafiles = meta_options.m_splot_mc_files;
335 mc_general_options.m_variables = {meta_options.m_splot_variable};
336 ROOTDataset mc_dataset(mc_general_options);
337
338 auto mc_signals = mc_dataset.getSignals();
339 auto mc_weights = mc_dataset.getWeights();
340 auto mc_feature = mc_dataset.getFeature(0);
341 auto data_feature = discriminant_dataset.getFeature(0);
342 auto data_weights = discriminant_dataset.getWeights();
343
344 Binning binning = Binning::CreateEqualFrequency(mc_feature, mc_weights, mc_signals, 100);
345
346 float signalFraction = binning.m_signal_yield / (binning.m_signal_yield + binning.m_bckgrd_yield);
347
348 std::vector<double> data(100, 0);
349 double total_data = 0.0;
350 for (unsigned int iEvent = 0; iEvent < data_dataset.getNumberOfEvents(); ++iEvent) {
351 data[binning.getBin(data_feature[iEvent])] += data_weights[iEvent];
352 total_data += data_weights[iEvent];
353 }
354
355 // We do a simple fit here to estimate the signal and background yields
356 // We could use RooFit here to avoid using custom code,
357 // but I found RooFit to be difficult and unstable ...
358
359 float best_yield = 0.0;
360 double best_chi2 = 1000000000.0;
361 bool empty_bin = false;
362 for (double yield = 0; yield < total_data; yield += 1) {
363 double chi2 = 0.0;
364 for (unsigned int iBin = 0; iBin < 100; ++iBin) {
365 double deviation = (data[iBin] - (yield * binning.m_signal_pdf[iBin] + (total_data - yield) * binning.m_bckgrd_pdf[iBin]) *
366 (binning.m_boundaries[iBin + 1] - binning.m_boundaries[iBin]) / (binning.m_boundaries[100] - binning.m_boundaries[0]));
367 if (data[iBin] > 0)
368 chi2 += deviation * deviation / data[iBin];
369 else
370 empty_bin = true;
371 }
372 if (chi2 < best_chi2) {
373 best_chi2 = chi2;
374 best_yield = yield;
375 }
376 }
377
378 if (empty_bin) {
379 B2WARNING("Encountered empty bin in data histogram during fit of the components for sPlot");
380 }
381
382 B2INFO("sPlot best yield " << best_yield);
383 B2INFO("sPlot Yields On MC " << binning.m_signal_yield << " " << binning.m_bckgrd_yield);
384
385 binning.m_signal_yield = best_yield;
386 binning.m_bckgrd_yield = (total_data - best_yield);
387
388 B2INFO("sPlot Yields Fitted On Data " << binning.m_signal_yield << " " << binning.m_bckgrd_yield);
389
390 if (meta_options.m_splot_boosted) {
391 GeneralOptions boost_general_options = data_general_options;
392 boost_general_options.m_identifier = general_options.m_identifier + "_boost.xml";
393 SPlotDataset splot_dataset(boost_general_options, data_dataset, getBoostWeights(discriminant_dataset, binning), signalFraction);
394 auto boost_expert = teacher_dataset(boost_general_options, specific_options, splot_dataset);
395
396 SPlotDataset aplot_dataset(data_general_options, data_dataset, getAPlotWeights(discriminant_dataset, binning,
397 boost_expert->apply(data_dataset)), signalFraction);
398 auto splot_expert = teacher_dataset(data_general_options, specific_options, aplot_dataset);
399 if (not meta_options.m_splot_combined)
400 return splot_expert;
401 } else {
402 SPlotDataset splot_dataset(data_general_options, data_dataset, getSPlotWeights(discriminant_dataset, binning), signalFraction);
403 auto splot_expert = teacher_dataset(data_general_options, specific_options, splot_dataset);
404 if (not meta_options.m_splot_combined)
405 return splot_expert;
406 }
407
408 mc_general_options.m_identifier = general_options.m_identifier + "_pdf.xml";
409 mc_general_options.m_method = "PDF";
410 PDFOptions pdf_options;
411 // cppcheck-suppress unreadVariable
412 auto pdf_expert = teacher_dataset(mc_general_options, pdf_options, mc_dataset);
413
414 GeneralOptions combination_general_options = general_options;
415 combination_general_options.m_method = "Combination";
416 combination_general_options.m_variables.push_back(meta_options.m_splot_variable);
417 CombinationOptions combination_options;
418 combination_options.m_weightfiles = {data_general_options.m_identifier, mc_general_options.m_identifier};
419 auto combination_expert = teacher_dataset(combination_general_options, combination_options, data_dataset);
420
421 return combination_expert;
422}
423
424std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_reweighting(const GeneralOptions& general_options,
425 const SpecificOptions& specific_options,
426 const MetaOptions& meta_options)
427{
428 if (std::find(general_options.m_variables.begin(), general_options.m_variables.end(),
429 meta_options.m_reweighting_variable) != general_options.m_variables.end()) {
430 B2ERROR("You cannot use the reweighting variable as a feature in your training");
431 return nullptr;
432 }
433
434 GeneralOptions data_general_options = general_options;
435 data_general_options.m_target_variable = "";
436 data_general_options.m_datafiles = meta_options.m_reweighting_data_files;
437 ROOTDataset data_dataset(data_general_options);
438
439 GeneralOptions mc_general_options = general_options;
440 mc_general_options.m_datafiles = meta_options.m_reweighting_mc_files;
441 ROOTDataset mc_dataset(mc_general_options);
442
443 CombinedDataset boost_dataset(general_options, data_dataset, mc_dataset);
444
445 GeneralOptions boost_general_options = general_options;
446 boost_general_options.m_identifier = general_options.m_identifier + "_boost.xml";
447 // cppcheck-suppress unreadVariable
448 auto boost_expert = teacher_dataset(boost_general_options, specific_options, boost_dataset);
449
450 GeneralOptions reweighter_general_options = general_options;
451 reweighter_general_options.m_identifier = meta_options.m_reweighting_identifier;
452 reweighter_general_options.m_method = "Reweighter";
453 ReweighterOptions reweighter_specific_options;
454 reweighter_specific_options.m_weightfile = boost_general_options.m_identifier;
455 reweighter_specific_options.m_variable = meta_options.m_reweighting_variable;
456
457 if (meta_options.m_reweighting_variable != "") {
458 if (std::find(reweighter_general_options.m_spectators.begin(), reweighter_general_options.m_spectators.end(),
459 meta_options.m_reweighting_variable) == reweighter_general_options.m_spectators.end() and
460 std::find(reweighter_general_options.m_variables.begin(), reweighter_general_options.m_variables.end(),
461 meta_options.m_reweighting_variable) == reweighter_general_options.m_variables.end() and
462 reweighter_general_options.m_target_variable != meta_options.m_reweighting_variable and
463 reweighter_general_options.m_weight_variable != meta_options.m_reweighting_variable) {
464 reweighter_general_options.m_spectators.push_back(meta_options.m_reweighting_variable);
465 }
466 }
467
468 ROOTDataset dataset(reweighter_general_options);
469 auto reweight_expert = teacher_dataset(reweighter_general_options, reweighter_specific_options, dataset);
470 auto weights = reweight_expert->apply(dataset);
471 ReweightingDataset reweighted_dataset(general_options, dataset, weights);
472 auto expertLocal = teacher_dataset(general_options, specific_options, reweighted_dataset);
473
474 return expertLocal;
475}
476
477std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_sideband_subtraction(const GeneralOptions& general_options,
478 const SpecificOptions& specific_options,
479 const MetaOptions& meta_options)
480{
481
482 if (std::find(general_options.m_variables.begin(), general_options.m_variables.end(),
483 meta_options.m_sideband_variable) != general_options.m_variables.end()) {
484 B2ERROR("You cannot use the sideband variable as a feature in your training");
485 return nullptr;
486 }
487
488 GeneralOptions data_general_options = general_options;
489 if (std::find(data_general_options.m_spectators.begin(), data_general_options.m_spectators.end(),
490 meta_options.m_sideband_variable) == data_general_options.m_spectators.end()) {
491 data_general_options.m_spectators.push_back(meta_options.m_sideband_variable);
492 }
493 ROOTDataset data_dataset(data_general_options);
494
495 GeneralOptions mc_general_options = general_options;
496 mc_general_options.m_datafiles = meta_options.m_sideband_mc_files;
497 if (std::find(mc_general_options.m_spectators.begin(), mc_general_options.m_spectators.end(),
498 meta_options.m_sideband_variable) == mc_general_options.m_spectators.end()) {
499 mc_general_options.m_spectators.push_back(meta_options.m_sideband_variable);
500 }
501 ROOTDataset mc_dataset(mc_general_options);
502
503 GeneralOptions sideband_general_options = general_options;
504 SidebandDataset sideband_dataset(sideband_general_options, data_dataset, mc_dataset, meta_options.m_sideband_variable);
505 auto expertLocal = teacher_dataset(general_options, specific_options, sideband_dataset);
506
507 return expertLocal;
508}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
A class that describes the interval of experiments/runs for which an object in the database is valid.
static void initSupportedInterfaces()
Static function which initliazes all supported interfaces, has to be called once before getSupportedI...
Definition: Interface.cc:45
static std::map< std::string, AbstractInterface * > getSupportedInterfaces()
Returns interfaces supported by the MVA Interface.
Definition: Interface.h:53
Binning of a data distribution Provides PDF and CDF values of the distribution per bin.
Definition: Binning.h:27
std::vector< float > m_bckgrd_pdf
Background pdf of data distribution per bin.
Definition: Binning.h:58
std::vector< float > m_signal_pdf
Signal pdf of data distribution per bin.
Definition: Binning.h:56
std::vector< float > m_boundaries
Boundaries of data distribution, including minimum and maximum value as first and last boundary.
Definition: Binning.h:61
double m_bckgrd_yield
Background yield in data distribution.
Definition: Binning.h:54
double m_signal_yield
Signal yield in data distribution.
Definition: Binning.h:53
unsigned int getBin(float datapoint) const
Gets the bin corresponding to the given datapoint.
Definition: Binning.cc:34
Options for the Combination MVA method.
Definition: Combination.h:28
std::vector< std::string > m_weightfiles
Weightfiles of all methods we want to combine.
Definition: Combination.h:53
Wraps two other Datasets, one containing signal, the other background events Used by the reweighting ...
Definition: Dataset.h:294
Abstract base class of all Datasets given to the MVA interface The current event can always be access...
Definition: Dataset.h:33
virtual std::vector< bool > getSignals()
Returns all is Signals.
Definition: Dataset.cc:122
General options which are shared by all MVA trainings.
Definition: Options.h:62
std::vector< std::string > m_datafiles
Name of the datafiles containing the training data.
Definition: Options.h:84
std::vector< std::string > m_variables
Vector of all variables (branch names) used in the training.
Definition: Options.h:86
std::string m_weight_variable
Weight variable (branch name) defining the weights.
Definition: Options.h:91
std::vector< std::string > m_spectators
Vector of all spectators (branch names) used in the training.
Definition: Options.h:87
std::string m_method
Name of the MVA method to use.
Definition: Options.h:82
std::string m_target_variable
Target variable (branch name) defining the target.
Definition: Options.h:90
std::string m_identifier
Identifier containing the finished training.
Definition: Options.h:83
Meta Options which modify the underlying training by doing sPlot, Multiclass and HyperparameterSearch...
Definition: Options.h:111
Options for the PDF MVA method.
Definition: PDF.h:29
Proivdes a dataset from a ROOT file This is the usually used dataset providing training data to the m...
Definition: Dataset.h:349
virtual unsigned int getNumberOfEvents() const override
Returns the number of events in this dataset.
Definition: Dataset.h:371
virtual std::vector< float > getFeature(unsigned int iFeature) override
Returns all values of one feature in a std::vector<float>
Definition: Dataset.cc:429
virtual std::vector< float > getWeights() override
Returns all values of of the weights in a std::vector<float>
Definition: Dataset.cc:408
Options for the Reweighter MVA method.
Definition: Reweighter.h:28
std::string m_weightfile
Weightfile of the reweighting expert.
Definition: Reweighter.h:53
std::string m_variable
Variable which decides if the reweighter is applied or not.
Definition: Reweighter.h:54
Dataset for Reweighting Wraps a dataset and provides each data-point with a new weight.
Definition: DataDriven.h:29
Dataset for sPlot Wraps a dataset and provides each data-point twice, once as signal and once as back...
Definition: DataDriven.h:161
Dataset for Sideband Subtraction Wraps a dataset and provides each data-point with a new weight.
Definition: DataDriven.h:104
Specific Options, all method Options have to inherit from this class.
Definition: Options.h:98
static void expert(const std::vector< std::string > &filenames, const std::vector< std::string > &datafiles, const std::string &treename, const std::string &outputfile, int experiment=0, int run=0, int event=0, bool copy_target=true)
Convenience function applies experts on given data.
Definition: Utility.cc:138
static void upload_array(const std::vector< std::string > &filenames, const std::string &identifier, int exp1=0, int run1=0, int exp2=-1, int run2=-1)
Convenience function which uploads an array of weightfiles to the database.
Definition: Utility.cc:61
static void upload(const std::string &filename, const std::string &identifier, int exp1=0, int run1=0, int exp2=-1, int run2=-1)
Convenience function which uploads a given weightfile to the database.
Definition: Utility.cc:46
static void download(const std::string &identifier, const std::string &filename, int experiment=0, int run=0, int event=0)
Convenience function which downloads a given weightfile from the database.
Definition: Utility.cc:32
static std::unique_ptr< Belle2::MVA::Expert > teacher_sideband_subtraction(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options)
Performs a sideband subtraction training, convenience function.
Definition: Utility.cc:477
static std::unique_ptr< Belle2::MVA::Expert > teacher_reweighting(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options)
Performs a MC vs data pre-training and afterwards reweighted training, convenience function.
Definition: Utility.cc:424
static void teacher(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options=MetaOptions())
Convenience function which performs a training with the given options.
Definition: Utility.cc:253
static void extract(const std::string &filename, const std::string &directory)
Convenience function which extracts the expertise in a given weightfile into a temporary directory.
Definition: Utility.cc:83
static std::unique_ptr< Belle2::MVA::Expert > teacher_dataset(GeneralOptions general_options, const SpecificOptions &specific_options, Dataset &data)
Convenience function which performs a training on a dataset.
Definition: Utility.cc:282
static std::string info(const std::string &filename)
Print information about the classifier stored in the given weightfile.
Definition: Utility.cc:98
static void save_custom_weightfile(const GeneralOptions &general_options, const SpecificOptions &specific_options, const std::string &custom_weightfile, const std::string &output_identifier="")
Convenience function which saves a pre-existing weightfile in a mva package-compliant format.
Definition: Utility.cc:232
static std::unique_ptr< Belle2::MVA::Expert > teacher_splot(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options)
Performs an splot training, convenience function.
Definition: Utility.cc:313
static bool available(const std::string &filename, int experiment=0, int run=0, int event=0)
Convenience function which checks if an experise is available.
Definition: Utility.cc:126
The Weightfile class serializes all information about a training into an xml tree.
Definition: Weightfile.h:38
void addFile(const std::string &identifier, const std::string &custom_weightfile)
Add a file (mostly a weightfile from a MVA library) to our Weightfile.
Definition: Weightfile.cc:115
static Weightfile loadFromXMLFile(const std::string &filename)
Static function which loads a Weightfile from a XML file.
Definition: Weightfile.cc:240
static void save(Weightfile &weightfile, const std::string &filename, const Belle2::IntervalOfValidity &iov=Belle2::IntervalOfValidity(0, 0, -1, -1))
Static function which saves a Weightfile to a file.
Definition: Weightfile.cc:154
static void saveToXMLFile(Weightfile &weightfile, const std::string &filename)
Static function which saves a Weightfile to a XML file.
Definition: Weightfile.cc:175
void addOptions(const Options &options)
Add an Option object to the xml tree.
Definition: Weightfile.cc:62
static Weightfile loadFromROOTFile(const std::string &filename)
Static function which loads a Weightfile from a ROOT file.
Definition: Weightfile.cc:217
static Weightfile load(const std::string &filename, const Belle2::EventMetaData &emd=Belle2::EventMetaData(0, 0, 0))
Static function which loads a Weightfile from a file or from the database.
Definition: Weightfile.cc:195
static Weightfile loadFromDatabase(const std::string &identifier, const Belle2::EventMetaData &emd=Belle2::EventMetaData(0, 0, 0))
Static function which loads a Weightfile from the basf2 condition database.
Definition: Weightfile.cc:281
static void saveToROOTFile(Weightfile &weightfile, const std::string &filename)
Static function which saves a Weightfile to a ROOT file.
Definition: Weightfile.cc:165
static void saveArrayToDatabase(const std::vector< Weightfile > &weightfiles, const std::string &identifier, const Belle2::IntervalOfValidity &iov=Belle2::IntervalOfValidity(0, 0, -1, -1))
Static function which saves an array of Weightfile objects in the basf2 condition database.
Definition: Weightfile.cc:267
static void saveToDatabase(Weightfile &weightfile, const std::string &identifier, const Belle2::IntervalOfValidity &iov=Belle2::IntervalOfValidity(0, 0, -1, -1))
Static function which saves a Weightfile in the basf2 condition database.
Definition: Weightfile.cc:258
static std::string makeROOTCompatible(std::string str)
Remove special characters that ROOT dislikes in branch names, e.g.