15if __name__ ==
"__main__":
16 from basf2
import conditions, find_file
18 conditions.testing_payloads = [
19 'localdb/database.txt'
21 train_file = find_file(
"mva/train_D0toKpipi.root",
"examples")
22 test_file = find_file(
"mva/test_D0toKpipi.root",
"examples")
24 training_data = basf2_mva.vector(train_file)
25 testing_data = basf2_mva.vector(test_file)
27 variables = [
'M',
'p',
'pt',
'pz',
28 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
29 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
30 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
31 'chiProb',
'dr',
'dz',
32 'daughter(0, dr)',
'daughter(1, dr)',
33 'daughter(0, dz)',
'daughter(1, dz)',
34 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
35 'daughter(0, kaonID)',
'daughter(0, pionID)',
36 'daughterInvM(0, 1)',
'daughterInvM(0, 2)',
'daughterInvM(1, 2)']
39 general_options = basf2_mva.GeneralOptions()
40 general_options.m_datafiles = training_data
41 general_options.m_treename =
"tree"
42 general_options.m_identifier =
"TMVA"
43 general_options.m_variables = basf2_mva.vector(*variables)
44 general_options.m_target_variable =
"isSignal"
46 tmva_bdt_options = basf2_mva.TMVAOptionsClassification()
47 tmva_bdt_options.m_config = (
"!H:!V:CreateMVAPdfs:NTrees=100:BoostType=Grad:Shrinkage=0.2:UseBaggedBoost:"
48 "BaggedSampleFraction=0.5:nCuts=1024:MaxDepth=3:IgnoreNegWeightsInTraining")
50 training_start = time.time()
51 basf2_mva.teacher(general_options, tmva_bdt_options)
52 training_stop = time.time()
54 training_time = training_stop - training_start
57 inference_start = time.time()
58 p, t = method.apply_expert(testing_data, general_options.m_treename)
59 inference_stop = time.time()
60 inference_time = inference_stop - inference_start
63 print(
"TMVA", training_time, inference_time, auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)