23 from basf2
import B2INFO
24 import flavorTagger
as ft
25 from defaultEvaluationParameters
import categories, Quiet, r_subsample, r_size
26 from array
import array
32 ROOT.gROOT.SetBatch(
True)
34 if len(sys.argv) != 3:
35 sys.exit(
"Must provide 2 arguments: [input_sim_file] or ['input_sim_file*'] with wildcards and [treeName]"
37 workingFile = sys.argv[1]
38 workingFiles = glob.glob(str(workingFile))
39 treeName = str(sys.argv[2])
41 if len(workingFiles) < 1:
42 sys.exit(
"No file name or file names " + str(workingFile) +
" found.")
45 workingDirectory =
'.'
60 tree = ROOT.TChain(treeName)
62 mcstatus = array(
'd', [-511.5, 0.0, 511.5])
63 ROOT.TH1.SetDefaultSumw2()
65 for iFile
in workingFiles:
69 for branch
in tree.GetListOfBranches():
70 totalBranches.append(branch.GetName())
72 if 'FBDT_qrCombined' in totalBranches:
73 methods.append(
"FBDT")
75 if 'FANN_qrCombined' in totalBranches:
76 methods.append(
"FANN")
78 if 'DNN_qrCombined' in totalBranches:
82 for cat
in categories:
83 catBranch =
'qp' + cat
84 if catBranch
in totalBranches:
85 usedCategories.append(cat)
91 for method
in methods:
94 histo_avr_r = ROOT.TH1F(
'Average_r',
'Average r in each of the bins (B0 and B0bar)', int(r_size - 2),
96 histo_avr_rB0 = ROOT.TH1F(
'Average_rB0',
'Average r in each of the bins (B0)', int(r_size - 2),
98 histo_avr_rB0bar = ROOT.TH1F(
'Average_rB0bar',
'Average r in each of the bins (B0bar)', int(r_size - 2),
102 histo_mc_NwB0 = ROOT.TH1F(
'mc_NwB0',
'Average r in each of the bins (B0)', int(r_size - 2),
104 histo_mc_NwB0bar = ROOT.TH1F(
'mc_NwB0bar',
'Average r in each of the bins (B0bar)', int(r_size - 2),
108 histo_ms_r = ROOT.TH1F(
'MS_r',
'Mean squared average of r in each of the bins (B0 and B0bar)', int(r_size - 2),
110 histo_ms_rB0 = ROOT.TH1F(
'MS_rB0',
'Mean squared average of r in each of the bins (B0)', int(r_size - 2),
112 histo_ms_rB0bar = ROOT.TH1F(
'MS_rB0bar',
'Mean squared average of r in each of the bins (B0bar)', int(r_size - 2),
116 histo_entries_per_bin = ROOT.TH1F(
118 'Events binned in r_subsample according to their r-value for B0 and B0bar prob',
121 histo_entries_per_binB0 = ROOT.TH1F(
'entries_per_binB0',
'Events binned in r_subsample according '
122 'to their r-value for B0 prob', int(r_size - 2), r_subsample)
123 histo_entries_per_binB0bar = ROOT.TH1F(
'entries_per_binB0bar',
124 'Events binned in r_subsample according to their r-value '
125 'for B0bar prob', int(r_size - 2), r_subsample)
127 histo_Cnet_output_B0 = ROOT.TH1F(
'Comb_Net_Output_B0',
'Combiner network output [not equal to r] '
128 'for true B0 (binning 100)', 100, 0.0, 1.0)
130 histo_Cnet_output_B0bar = ROOT.TH1F(
'Comb_Net_Output_B0bar',
'Combiner network output [not equal to r] '
131 'for true B0bar (binning 100)', 100, 0.0, 1.0)
133 histo_belleplotB0 = ROOT.TH1F(
'BellePlot_B0',
134 'BellePlot for true B0 (binning 50)', 50,
137 histo_belleplotB0bar = ROOT.TH1F(
'BellePlot_B0Bar',
138 'BellePlot for true B0Bar (binning 50)',
141 histo_notTaggedEvents = ROOT.TH1F(
'notTaggedEvents',
142 'Histogram for not tagged events',
148 histo_calib_B0 = ROOT.TH1F(
'Calibration_B0',
'CalibrationPlot for true B0', 100, -1.0, 1.0)
150 histo_calib_B0bar = ROOT.TH1F(
'Calibration_B0Bar',
151 'CalibrationPlot for true B0Bar', 100, -1.0,
154 hallo12 = ROOT.TH1F(
'BellePlot_NoCut',
'BellePlot_NoCut (binning 100)',
158 diag = ROOT.TF1(
'diag',
'pol1', -1, 1)
162 histo_m0 = ROOT.TH1F(
'BellePlot_m0',
163 'BellePlot_m for true B0 (binning 50)', 50, -1.0, 1.0)
164 histo_m1 = ROOT.TH1F(
'BellePlot_m1',
165 'BellePlot_m for true B0 (binning 50)', 50, -1.0, 1.0)
166 histo_m2 = ROOT.TH1F(
'BellePlot_m2',
167 'BellePlot_m for true B0Bar (binning 50)', 50, -1.0,
172 tree.Draw(method +
'_qrCombined>>BellePlot_B0',
'qrMC == 1')
173 tree.Draw(method +
'_qrCombined>>BellePlot_B0Bar',
'qrMC == -1')
174 tree.Draw(method +
'_qrCombined>>BellePlot_NoCut',
'abs(qrMC) == 1')
176 tree.Draw(method +
'_qrCombined>>Calibration_B0',
'qrMC == 1')
177 tree.Draw(method +
'_qrCombined>>Calibration_B0Bar',
'qrMC == -1')
179 tree.Draw(method +
'_qrCombined>>notTaggedEvents',
180 'abs(qrMC) == 0 && isSignal == 1 && ' +
181 method +
'_qrCombined < -1')
184 tree.Draw(method +
'_qrCombined>>BellePlot_m0',
185 'qrMC == 1 && ' + method +
'_qrCombined>0')
186 tree.Draw(method +
'_qrCombined>>BellePlot_m1',
187 'qrMC == 1 && ' + method +
'_qrCombined<0')
188 tree.Draw(method +
'_qrCombined>>BellePlot_m2',
189 'qrMC == -1 && ' + method +
'_qrCombined>0 ')
194 tree.Project(
'Average_r',
'abs(' + method +
'_qrCombined)',
'abs(' + method +
'_qrCombined)*(abs(qrMC) == 1)')
195 tree.Project(
'Average_rB0',
'abs(' + method +
'_qrCombined)',
'abs(' + method +
'_qrCombined)*(qrMC==1)')
196 tree.Project(
'Average_rB0bar',
'abs(' + method +
'_qrCombined)',
'abs(' + method +
'_qrCombined)*(qrMC==-1)')
198 tree.Project(
'MS_r',
'abs(' + method +
'_qrCombined)',
'(' + method +
199 '_qrCombined*' + method +
'_qrCombined)*(abs(qrMC) == 1)')
200 tree.Project(
'MS_rB0',
'abs(' + method +
'_qrCombined)',
201 '(' + method +
'_qrCombined*' + method +
'_qrCombined)*(qrMC==1)')
202 tree.Project(
'MS_rB0bar',
'abs(' + method +
'_qrCombined)',
203 '(' + method +
'_qrCombined*' + method +
'_qrCombined)*(qrMC==-1)')
206 tree.Project(
'entries_per_bin',
'abs(' + method +
'_qrCombined)',
'abs(qrMC) == 1')
207 tree.Project(
'entries_per_binB0',
'abs(' + method +
'_qrCombined)',
'qrMC == 1')
208 tree.Project(
'entries_per_binB0bar',
'abs(' + method +
'_qrCombined)',
'qrMC == -1')
211 tree.Project(
'mc_NwB0',
'abs(' + method +
'_qrCombined)',
' ' + method +
'_qrCombined*qrMC < 0 && qrMC == 1')
212 tree.Project(
'mc_NwB0bar',
'abs(' + method +
'_qrCombined)',
' ' + method +
'_qrCombined*qrMC < 0 && qrMC == -1')
215 histo_avr_r.Divide(histo_entries_per_bin)
216 histo_avr_rB0.Divide(histo_entries_per_binB0)
217 histo_avr_rB0bar.Divide(histo_entries_per_binB0bar)
219 histo_ms_r.Divide(histo_entries_per_bin)
220 histo_ms_rB0.Divide(histo_entries_per_binB0)
221 histo_ms_rB0bar.Divide(histo_entries_per_binB0bar)
225 histo_calib_B0.Divide(hallo12)
226 histo_calib_B0bar.Divide(hallo12)
230 print(
'****************************** CALIBRATION CHECK FOR COMBINER USING ' +
231 method +
' ***************************************')
233 print(
'Fit ploynomial of first order to the calibration plot. Expected value ~0.5')
235 histo_calib_B0.Fit(diag,
'TEST')
237 print(
'****************************** MEASURED EFFECTIVE EFFICIENCY FOR COMBINER USING ' +
238 method +
' ***********************************')
242 total_tagged = histo_entries_per_bin.GetEntries()
243 total_tagged_B0 = histo_entries_per_binB0.GetEntries()
244 total_tagged_B0bar = histo_entries_per_binB0bar.GetEntries()
245 total_notTagged = histo_notTaggedEvents.GetEntries()
246 total_entries = (total_tagged + total_notTagged)
248 total_entriesB0 = (total_tagged_B0 + total_notTagged / 2)
249 total_entriesB0bar = (total_tagged_B0bar + total_notTagged / 2)
251 tagging_eff = total_tagged / (total_tagged + total_notTagged)
252 DeltaTagging_eff = math.sqrt(total_tagged * total_notTagged**2 + total_notTagged * total_tagged**2) / (total_entries**2)
256 uncertainty_eff_effB0 = 0
257 uncertainty_eff_effB0bar = 0
258 uncertainty_eff_effAverage = 0
259 diff_eff_Uncertainty = 0
260 event_fractionB0 = array(
'f', [0] * r_size)
261 event_fractionB0bar = array(
'f', [0] * r_size)
262 event_fractionTotal = array(
'f', [0] * r_size)
263 event_fractionTotalUncertainty = array(
'f', [0] * r_size)
264 eventsInBin_B0 = array(
'f', [0] * r_size)
265 eventsInBin_B0bar = array(
'f', [0] * r_size)
266 eventsInBin_Total = array(
'f', [0] * r_size)
267 event_fractionDiff = array(
'f', [0] * r_size)
268 event_fractionDiffUncertainty = array(
'f', [0] * r_size)
269 rvalueB0 = array(
'f', [0] * r_size)
270 rvalueB0bar = array(
'f', [0] * r_size)
271 rvalueB0Average = array(
'f', [0] * r_size)
272 rvalueStdB0 = array(
'f', [0] * r_size)
273 rvalueStdB0bar = array(
'f', [0] * r_size)
274 rvalueStdB0Average = array(
'f', [0] * r_size)
275 wvalue = array(
'f', [0] * r_size)
276 wvalueUncertainty = array(
'f', [0] * r_size)
277 wvalueB0 = array(
'f', [0] * r_size)
278 wvalueB0bar = array(
'f', [0] * r_size)
279 wvalueB0Uncertainty = array(
'f', [0] * r_size)
280 wvalueB0barUncertainty = array(
'f', [0] * r_size)
281 wvalueDiff = array(
'f', [0] * r_size)
282 wvalueDiffUncertainty = array(
'f', [0] * r_size)
283 entries = array(
'f', [0] * r_size)
284 entriesB0 = array(
'f', [0] * r_size)
285 entriesB0bar = array(
'f', [0] * r_size)
286 iEffEfficiency = array(
'f', [0] * r_size)
287 iEffEfficiencyUncertainty = array(
'f', [0] * r_size)
288 iEffEfficiencyB0Uncertainty = array(
'f', [0] * r_size)
289 iEffEfficiencyB0barUncertainty = array(
'f', [0] * r_size)
290 iEffEfficiencyB0UncertaintyFromOutput = array(
'f', [0] * r_size)
291 iEffEfficiencyB0barUncertaintyFromOutput = array(
'f', [0] * r_size)
293 iDeltaEffEfficiency = array(
'f', [0] * r_size)
294 iDeltaEffEfficiencyUncertainty = array(
'f', [0] * r_size)
295 muParam = array(
'f', [0] * r_size)
296 muParamUncertainty = array(
'f', [0] * r_size)
299 print(
'* --> DETERMINATION BASED ON MONTE CARLO ' +
303 print(
'* Note: mu = Delta_Effcy/(2*Efficiency). Needed for CP analysis ' +
304 'together with w and Delta_w *')
307 print(
'* ------------------------------------------------------------------' +
308 '-------------------------------------------------- *')
309 print(
'* r-interval <r> Efficiency Delta_Effcy ' +
311 print(
'* ------------------------------------------------------------------' +
312 '-------------------------------------------------- *')
314 for i
in range(1, r_size):
316 entries[i] = histo_entries_per_bin.GetBinContent(i)
317 entriesB0[i] = histo_entries_per_binB0.GetBinContent(i)
318 entriesB0bar[i] = histo_entries_per_binB0bar.GetBinContent(i)
321 event_fractionB0[i] = entriesB0[i] / total_entriesB0
322 event_fractionB0bar[i] = entriesB0bar[i] / total_entriesB0bar
327 event_fractionTotal[i] = (event_fractionB0[i] + event_fractionB0bar[i]) / 2
328 event_fractionDiff[i] = event_fractionB0[i] - event_fractionB0bar[i]
330 event_fractionDiffUncertainty[i] = math.sqrt(entriesB0[i] *
335 (total_entriesB0bar -
337 total_entriesB0bar**3)
339 event_fractionTotalUncertainty[i] = event_fractionDiffUncertainty[i] / 2
341 rvalueB0[i] = histo_avr_rB0.GetBinContent(i)
342 rvalueB0bar[i] = histo_avr_rB0bar.GetBinContent(i)
343 rvalueB0Average[i] = histo_avr_r.GetBinContent(i)
344 rvalueStdB0[i] = math.sqrt(histo_ms_rB0.GetBinContent(
345 i) - (histo_avr_rB0.GetBinContent(i))**2) / math.sqrt(entriesB0[i] - 1)
346 rvalueStdB0bar[i] = math.sqrt(histo_ms_rB0bar.GetBinContent(
347 i) - (histo_avr_rB0bar.GetBinContent(i))**2) / math.sqrt(entriesB0bar[i] - 1)
348 rvalueStdB0Average[i] = math.sqrt(rvalueStdB0[i]**2 + rvalueStdB0bar[i]**2) / 2
352 wvalueB0[i] = histo_mc_NwB0.GetBinContent(i) / entriesB0[i]
353 wvalueB0bar[i] = histo_mc_NwB0bar.GetBinContent(i) / entriesB0bar[i]
354 wvalueDiff[i] = wvalueB0[i] - wvalueB0bar[i]
355 wvalueB0Uncertainty[i] = math.sqrt(histo_mc_NwB0.GetBinContent(
356 i) * (entriesB0[i] - histo_mc_NwB0.GetBinContent(i)) / (entriesB0[i]**3))
357 wvalueB0barUncertainty[i] = math.sqrt(histo_mc_NwB0bar.GetBinContent(
358 i) * (entriesB0bar[i] - histo_mc_NwB0bar.GetBinContent(i)) / (entriesB0bar[i]**3))
360 wvalueDiffUncertainty[i] = math.sqrt(wvalueB0Uncertainty[i]**2 + wvalueB0barUncertainty[i]**2)
361 wvalue[i] = (wvalueB0[i] + wvalueB0bar[i]) / 2
362 wvalueUncertainty[i] = wvalueDiffUncertainty[i] / 2
369 iEffEfficiency[i] = event_fractionTotal[i] * (1 - 2 * wvalue[i])**2
371 iEffEfficiencyUncertainty[i] = (1 - 2 * wvalue[i]) * \
372 math.sqrt((2 * event_fractionTotal[i] * 2 * wvalueUncertainty[i])**2 +
373 (1 - 2 * wvalue[i])**2 * event_fractionTotalUncertainty[i]**2)
396 average_eff_eff += iEffEfficiency[i]
401 iDeltaEffEfficiency[i] = event_fractionB0[i] * (1 - 2 * wvalueB0[i])**2 - \
402 event_fractionB0bar[i] * (1 - 2 * wvalueB0bar[i])**2
404 iEffEfficiencyB0Uncertainty[i] = (1 - 2 * wvalueB0[i]) * \
405 math.sqrt((2 * total_entriesB0 * entriesB0[i] * 2 * wvalueB0Uncertainty[i])**2 +
406 (1 - 2 * wvalueB0[i])**2 * entriesB0[i] *
407 total_entriesB0 * (total_entriesB0 - entriesB0[i])) / (total_entriesB0**2)
408 iEffEfficiencyB0barUncertainty[i] = (1 - 2 * wvalueB0bar[i]) * \
409 math.sqrt((2 * total_entriesB0bar * entriesB0bar[i] * 2 * wvalueB0barUncertainty[i])**2 +
410 (1 - 2 * wvalueB0bar[i])**2 * entriesB0bar[i] *
411 total_entriesB0bar * (total_entriesB0bar - entriesB0bar[i])) / (total_entriesB0bar**2)
413 iDeltaEffEfficiencyUncertainty[i] = math.sqrt(iEffEfficiencyB0Uncertainty[i]**2 + iEffEfficiencyB0barUncertainty[i]**2)
416 diff_eff_Uncertainty = diff_eff_Uncertainty + iDeltaEffEfficiencyUncertainty[i]**2
419 tot_eff_effB0 = tot_eff_effB0 + event_fractionB0[i] * (1 - 2 * wvalueB0[i])**2
420 tot_eff_effB0bar = tot_eff_effB0bar + event_fractionB0bar[i] * (1 - 2 * wvalueB0bar[i])**2
421 uncertainty_eff_effAverage = uncertainty_eff_effAverage + iEffEfficiencyUncertainty[i]**2
422 uncertainty_eff_effB0 = uncertainty_eff_effB0 + iEffEfficiencyB0Uncertainty[i]**2
423 uncertainty_eff_effB0bar = uncertainty_eff_effB0bar + iEffEfficiencyB0barUncertainty[i]**2
424 muParam[i] = event_fractionDiff[i] / (2 * event_fractionTotal[i])
425 muParamUncertainty[i] = event_fractionDiffUncertainty[i] / (2 * event_fractionTotal[i]) * math.sqrt(muParam[i]**2 + 1)
428 print(
'* ' +
'{:.3f}'.format(r_subsample[i - 1]) +
' - ' +
'{:.3f}'.format(r_subsample[i]) +
' ' +
429 '{:.3f}'.format(rvalueB0Average[i]) +
' +- ' +
'{:.4f}'.format(rvalueStdB0Average[i]) +
' ' +
430 '{:.4f}'.format(event_fractionTotal[i]) +
' ' +
431 '{: .4f}'.format(event_fractionDiff[i]) +
' +- ' +
'{:.4f}'.format(event_fractionDiffUncertainty[i]) +
' ' +
432 '{: .4f}'.format(muParam[i]) +
' +- ' +
'{:.4f}'.format(muParamUncertainty[i]) +
' ' +
433 '{:.4f}'.format(wvalue[i]) +
' +- ' +
'{:.4f}'.format(wvalueUncertainty[i]) +
' ' +
434 '{: .4f}'.format(wvalueDiff[i]) +
' +- ' +
'{:.4f}'.format(wvalueDiffUncertainty[i]) +
' *')
437 uncertainty_eff_effAverage = math.sqrt(uncertainty_eff_effAverage)
438 uncertainty_eff_effB0 = math.sqrt(uncertainty_eff_effB0)
439 uncertainty_eff_effB0bar = math.sqrt(uncertainty_eff_effB0bar)
440 diff_eff = tot_eff_effB0 - tot_eff_effB0bar
441 diff_eff_Uncertainty = math.sqrt(diff_eff_Uncertainty)
442 print(
'* --------------------------------------------------------------------------------------------------' +
443 '------------------ *')
445 print(
'* __________________________________________________________________________________________ *')
447 print(
'* | TOTAL NUMBER OF TAGGED EVENTS = ' +
448 '{:<24}'.format(
"%.0f" % total_tagged) +
'{:>36}'.format(
'| *'))
451 '* | TOTAL AVERAGE EFFICIENCY (q=+-1)= ' +
462 '* | TOTAL AVERAGE EFFECTIVE EFFICIENCY (q=+-1)= ' +
468 uncertainty_eff_effAverage *
473 '* | TOTAL AVERAGE EFFECTIVE EFFICIENCY ASYMMETRY (q=+-1)= ' +
479 diff_eff_Uncertainty *
483 print(
'* | B0-TAGGER TOTAL EFFECTIVE EFFICIENCIES: ' +
484 '{:.2f}'.format(tot_eff_effB0 * 100) +
" +-" +
'{: 4.2f}'.format(uncertainty_eff_effB0 * 100) +
486 '{:.2f}'.format(tot_eff_effB0bar * 100) +
" +-" +
'{: 4.2f}'.format(uncertainty_eff_effB0bar * 100) +
487 ' % (q=-1) ' +
' | *')
489 print(
'* | FLAVOR PERCENTAGE (MC): ' +
490 '{:.2f}'.format(total_tagged_B0 / total_tagged * 100) +
' % (q=+1) ' +
491 '{:.2f}'.format(total_tagged_B0bar / total_tagged * 100) +
' % (q=-1) Diff=' +
492 '{:^5.2f}'.format((total_tagged_B0 - total_tagged_B0bar) / total_tagged * 100) +
' % | *')
493 print(
'* |__________________________________________________________________________________________| *')
495 print(
'****************************************************************************************************')
499 print(
'* --------------------------------- *')
500 print(
'* Efficiency Determination - easiest way *')
501 print(
'* --------------------------------- *')
502 total_tagged_B0 = histo_belleplotB0.GetEntries()
503 total_tagged_B0Bar = histo_belleplotB0bar.GetEntries()
504 total_tagged_wrong = histo_m1.GetEntries()
505 total_tagged_B0Bar_wrong = histo_m2.GetEntries()
506 total_tagged = total_tagged_B0 + total_tagged_B0Bar
507 total_tagged_wrong = total_tagged_wrong + total_tagged_B0Bar_wrong
509 wrong_tag_fraction_B0 = total_tagged_wrong / total_tagged_B0
510 wrong_tag_fraction_B0Bar = total_tagged_B0Bar_wrong / total_tagged_B0Bar
511 wrong_tag_fraction = total_tagged_wrong / total_tagged
512 right_tag_fraction_B0 = 1 - 2 * wrong_tag_fraction_B0
513 right_tag_fraction_B0Bar = 1 - 2 * wrong_tag_fraction_B0Bar
514 right_tag_fraction = 1 - 2 * wrong_tag_fraction
515 wrong_eff_B0 = right_tag_fraction_B0 * right_tag_fraction_B0
516 wrong_eff_B0Bar = right_tag_fraction_B0Bar * right_tag_fraction_B0Bar
517 wrong_eff = right_tag_fraction * right_tag_fraction
519 print(
'* wrong_tag_fraction for all: ' +
520 '{:.3f}'.format(wrong_tag_fraction * 100) +
522 print(
'* right_tag_fraction for all: ' +
523 '{:.3f}'.format(right_tag_fraction * 100) +
525 print(
'* wrong calculated eff all: ' +
'{:.3f}'.format(wrong_eff * 100) +
528 print(
'****************************************************************************************************')
530 print(
'Table For B2TIP')
543 maxB0 = histo_belleplotB0.GetBinContent(histo_belleplotB0.GetMaximumBin())
544 maxB0bar = histo_belleplotB0bar.GetBinContent(histo_belleplotB0bar.GetMaximumBin())
546 Ymax = max(maxB0, maxB0bar)
547 Ymax = Ymax + Ymax / 12
549 if YmaxForQrPlot < Ymax:
553 ROOT.gStyle.SetOptStat(0)
554 Canvas1 = ROOT.TCanvas(
'Bla' + method,
'Final Output', 1200, 800)
556 histo_belleplotB0.SetFillColorAlpha(ROOT.kBlue, 0.2)
557 histo_belleplotB0.SetFillStyle(1001)
558 histo_belleplotB0.GetYaxis().SetLabelSize(0.03)
559 histo_belleplotB0.GetYaxis().SetLimits(0, YmaxForQrPlot)
560 histo_belleplotB0.GetYaxis().SetTitleOffset(1.2)
561 histo_belleplotB0.SetLineColor(ROOT.kBlue)
562 histo_belleplotB0bar.SetFillColorAlpha(ROOT.kRed, 1.0)
563 histo_belleplotB0bar.SetFillStyle(3005)
564 histo_belleplotB0bar.SetLineColor(ROOT.kRed)
567 histo_belleplotB0.SetTitle(
'Final Flavor Tagger Output; #it{qr}-output ; Events'
569 histo_belleplotB0.SetMinimum(0)
570 histo_belleplotB0.SetMaximum(YmaxForQrPlot)
571 histo_belleplotB0.Draw(
'hist')
572 histo_belleplotB0bar.Draw(
'hist same')
574 leg = ROOT.TLegend(0.75, 0.8, 0.9, 0.9)
575 leg.AddEntry(histo_belleplotB0,
'true B0')
576 leg.AddEntry(histo_belleplotB0bar,
'true B0bar')
581 with Quiet(ROOT.kError):
582 Canvas1.SaveAs(workingDirectory +
'/' +
'PIC_Belleplot_both' + method +
'.pdf')
585 Canvas2 = ROOT.TCanvas(
'Bla2' + method,
'Calibration plot for true B0', 1200, 800)
587 histo_calib_B0.SetFillColorAlpha(ROOT.kBlue, 0.2)
588 histo_calib_B0.SetFillStyle(1001)
589 histo_calib_B0.GetYaxis().SetTitleOffset(1.2)
590 histo_calib_B0.SetLineColor(ROOT.kBlue)
592 histo_calib_B0.SetTitle(
'Calibration For True B0; #it{qr}-output ; Calibration '
594 histo_calib_B0.Draw(
'hist')
597 with Quiet(ROOT.kError):
598 Canvas2.SaveAs(workingDirectory +
'/' +
'PIC_Calibration_B0' + method +
'.pdf')
601 histo_avr_rB0.Delete()
602 histo_avr_rB0bar.Delete()
604 histo_ms_rB0.Delete()
605 histo_ms_rB0bar.Delete()
606 histo_mc_NwB0.Delete()
607 histo_mc_NwB0bar.Delete()
608 histo_notTaggedEvents.Delete()
609 histo_entries_per_bin.Delete()
610 histo_entries_per_binB0.Delete()
611 histo_entries_per_binB0bar.Delete()
612 histo_Cnet_output_B0.Delete()
613 histo_Cnet_output_B0bar.Delete()
614 histo_belleplotB0.Delete()
615 histo_belleplotB0bar.Delete()
616 histo_calib_B0.Delete()
617 histo_calib_B0bar.Delete()
625 print(
r'\begin{tabularx}{1\textwidth}{@{}r r r r r r r@{}}')
627 print(
r'$r$- Interval $\enskip$ & $\varepsilon_i\ $ & $\Delta\varepsilon_i\ $ & $w_i \pm \delta w_i\enskip\; $ ' +
628 r' & $\Delta w_i \pm \delta\Delta w_i $& $\varepsilon_{\text{eff}, i} \pm \delta\varepsilon_{\text{eff}, i}\enskip\, $ ' +
629 r' & $\Delta \varepsilon_{\text{eff}, i} \pm \delta\Delta \varepsilon_{\text{eff}, i}\enskip\, $\\ \hline\hline')
630 for i
in range(1, r_size):
631 print(
'$ ' +
'{:.3f}'.format(r_subsample[i - 1]) +
' - ' +
'{:.3f}'.format(r_subsample[i]) +
'$ & $'
632 '{: 6.1f}'.format(event_fractionTotal[i] * 100) +
r'$ & $' +
633 '{: 7.2f}'.format(event_fractionDiff[i] * 100) +
r'\;$ & $' +
634 '{: 7.2f}'.format(wvalue[i] * 100) +
r" \pm " +
'{:2.2f}'.format(wvalueUncertainty[i] * 100) +
r'\enskip $ & $' +
635 '{: 7.2f}'.format(wvalueDiff[i] * 100) +
r" \pm " +
636 '{:2.2f}'.format(wvalueDiffUncertainty[i] * 100) +
r'\enskip $ & $' +
637 '{: 8.4f}'.format(iEffEfficiency[i] * 100) +
638 r" \pm " +
'{:2.4f}'.format(iEffEfficiencyUncertainty[i] * 100) +
r'\, $ & $' +
639 '{: 6.4f}'.format(iDeltaEffEfficiency[i] * 100) +
640 r" \pm " +
'{:2.4f}'.format(iDeltaEffEfficiencyUncertainty[i] * 100) +
641 r'\enskip\enskip $ \\ ')
642 print(
r'\hline\hline')
643 print(
r'\multicolumn{1}{r}{Total} & & \multicolumn{5}{r}{ $\varepsilon_\text{eff} = ' +
644 r'\sum_i \varepsilon_i \cdot \langle 1-2w_i\rangle^2 = ' +
645 '{: 6.2f}'.format(average_eff_eff * 100) +
r" \pm " +
'{: 6.2f}'.format(uncertainty_eff_effAverage * 100) +
r'\enskip\, ')
646 print(
r'\Delta \varepsilon_\text{eff} = ' +
647 '{: 6.2f}'.format(diff_eff * 100) +
r" \pm " +
'{: 6.2f}'.format(diff_eff_Uncertainty * 100) +
r'\quad\ $ }' +
650 print(
r'\end{tabular}')
654 print(
'Mu-Values for Table')
657 for i
in range(1, r_size):
658 print(
'$ ' +
'{:.3f}'.format(r_subsample[i - 1]) +
' - ' +
'{:.3f}'.format(r_subsample[i]) +
'$ & $'
659 '{: 7.2f}'.format(muParam[i] * 100) +
r" \pm " +
'{:2.2f}'.format(muParamUncertainty[i] * 100) +
r' $ & ')
668 print(ft.getEventLevelParticleLists(usedCategories))
671 print(
'******************************************* MEASURED EFFECTIVE EFFICIENCY FOR INDIVIDUAL CATEGORIES ' +
672 '**********************************************')
677 categoriesPerformance = []
678 NbinsCategories = 100
679 for category
in usedCategories:
681 hist_both = ROOT.TH1F(
'Both_' + category,
'Input Both (B0) ' +
682 category +
' (binning)', NbinsCategories, -1.0, 1.0)
684 hist_signal = ROOT.TH1F(
'Signal_' + category,
'Input Signal (B0) ' +
685 category +
' (binning)', NbinsCategories, -1.0, 1.0)
687 hist_background = ROOT.TH1F(
'Background_' + category,
'Input Background (B0bar) ' +
688 category +
' (binning)', NbinsCategories, -1.0, 1.0)
692 hist_probB0 = ROOT.TH1F(
'Probability' + category,
693 'Transformed to probability (B0) (' + category +
')',
694 NbinsCategories, 0.0, 1.0)
695 hist_probB0bar = ROOT.TH1F(
'ProbabilityB0bar_' + category,
696 'Transformed to probability (B0bar) (' + category +
')',
697 NbinsCategories, 0.0, 1.0)
699 hist_qrB0 = ROOT.TH1F(
'QR' + category,
'Transformed to qp (B0)(' +
700 category +
')', NbinsCategories, -1.0, 1.0)
701 hist_qrB0bar = ROOT.TH1F(
'QRB0bar_' + category,
'Transformed to qp (B0bar) (' +
702 category +
')', NbinsCategories, -1.0, 1.0)
705 histo_entries_per_bin = ROOT.TH1F(
'entries_per_bin_' + category,
'Abs(qp)(B0) (' + category +
')', int(r_size - 2), r_subsample)
706 histo_entries_per_binB0 = ROOT.TH1F(
'entries_per_bin' + category,
'Abs(qp)(B0) (' +
707 category +
')', int(r_size - 2), r_subsample)
708 histo_entries_per_binB0bar = ROOT.TH1F(
'entries_per_binB0bar_' + category,
709 'Abs(qp) (B0bar) (' + category +
')', int(r_size - 2), r_subsample)
713 hist_avr_rB0 = ROOT.TH1F(
'Average_r' + category,
'Average r for B0' +
714 category, int(r_size - 2), r_subsample)
715 hist_avr_rB0bar = ROOT.TH1F(
'Average_rB0bar_' + category,
'Average r for B0bar' +
716 category, int(r_size - 2), r_subsample)
718 hist_ms_rB0 = ROOT.TH1F(
'AverageSqrdR' + category,
'Average r sqrd for B0' +
719 category, int(r_size - 2), r_subsample)
720 hist_ms_rB0bar = ROOT.TH1F(
'AverageSqrdRB0bar_' + category,
'Average r sqrd for B0bar' +
721 category, int(r_size - 2), r_subsample)
725 hist_all = ROOT.TH1F(
'All_' + category,
'Input Signal (B0) and Background (B0Bar)' +
726 category +
' (binning 50)', 50, 0.0, 1.0)
727 hist_calib_B0 = ROOT.TH1F(
'Calib_' + category,
'Calibration Plot for true B0' +
728 category +
' (binning 50)', 50, 0.0, 1.0)
731 if category !=
"KaonNotWeighted" and category !=
"LambdaNotWeighted":
733 tree.Draw(
'qp' + category +
'>>Both_' + category,
'abs(qrMC) == 1.0')
735 tree.Draw(
'qp' + category +
'>>Signal_' + category,
'qrMC == 1.0')
737 tree.Draw(
'qp' + category +
'>>Background_' + category,
'qrMC == -1.0')
738 tree.Draw(
'qp' + category +
'>>All_' + category,
'qrMC!=0')
739 tree.Draw(
'qp' + category +
'>>Calib_' + category,
'qrMC == 1.0')
749 elif category ==
"KaonNotWeighted":
750 tree.Draw(
'extraInfo__boQpOfKaon__bc' +
'>>Both_' + category,
'abs(qrMC) == 1.0')
751 tree.Draw(
'extraInfo__boQpOfKaon__bc' +
'>>Signal_' + category,
'qrMC == 1.0')
752 tree.Draw(
'extraInfo__boQpOfKaon__bc' +
'>>Background_' + category,
'qrMC == -1.0')
753 tree.Draw(
'extraInfo__boQpOfKaon__bc' +
'>>All_' + category,
'qrMC!=0')
754 tree.Draw(
'extraInfo__boQpOfKaon__bc' +
'>>Calib_' + category,
'qrMC == 1.0')
756 elif category ==
"LambdaNotWeighted":
757 tree.Draw(
'extraInfo__boQpOfLambda__bc' +
'>>Both_' + category,
'abs(qrMC) == 1.0')
758 tree.Draw(
'extraInfo__boQpOfLambda__bc' +
'>>Signal_' + category,
'qrMC == 1.0')
759 tree.Draw(
'extraInfo__boQpOfLambda__bc' +
'>>Background_' + category,
'qrMC == -1.0')
760 tree.Draw(
'extraInfo__boQpOfLambda__bc' +
'>>All_' + category,
'qrMC!=0')
761 tree.Draw(
'extraInfo__boQpOfLambda__bc' +
'>>Calib_' + category,
'qrMC == 1.0')
763 hist_calib_B0.Divide(hist_all)
766 maxSignal = hist_signal.GetBinContent(hist_signal.GetMaximumBin())
767 maxBackground = hist_background.GetBinContent(hist_background.GetMaximumBin())
769 Ymax = max(maxSignal, maxBackground)
770 Ymax = Ymax + Ymax / 12
772 ROOT.gStyle.SetOptStat(0)
773 with Quiet(ROOT.kError):
774 Canvas = ROOT.TCanvas(
'Bla',
'TITEL BLA', 1200, 800)
777 hist_signal.SetFillColorAlpha(ROOT.kBlue, 0.2)
778 hist_signal.SetFillStyle(1001)
779 hist_signal.SetTitleSize(0.1)
780 hist_signal.GetXaxis().SetLabelSize(0.04)
781 hist_signal.GetYaxis().SetLabelSize(0.04)
782 hist_signal.GetXaxis().SetTitleSize(0.05)
783 hist_signal.GetYaxis().SetTitleSize(0.05)
784 hist_signal.GetXaxis().SetTitleOffset(0.95)
785 hist_signal.GetYaxis().SetTitleOffset(1.1)
786 hist_signal.GetYaxis().SetLimits(0, Ymax)
787 hist_signal.SetLineColor(ROOT.kBlue)
788 hist_background.SetFillColorAlpha(ROOT.kRed, 1.0)
789 hist_background.SetFillStyle(3005)
790 hist_background.GetYaxis().SetLimits(0, Ymax)
791 hist_background.SetLineColor(ROOT.kRed)
793 hist_signal.SetTitle(category +
' category; #it{qp}-Output ; Events')
795 hist_signal.SetMaximum(Ymax)
797 hist_background.SetMaximum(Ymax)
799 hist_signal.Draw(
'hist')
800 hist_background.Draw(
'hist same')
802 if category ==
'MaximumPstar':
803 legend = ROOT.TLegend(0.4, 0.75, 0.6, 0.9)
805 legend = ROOT.TLegend(0.6, 0.75, 0.8, 0.9)
806 legend.AddEntry(hist_signal,
'true B0')
807 legend.AddEntry(hist_background,
'true B0bar')
808 legend.SetTextSize(0.05)
812 with Quiet(ROOT.kError):
813 Canvas.SaveAs(workingDirectory +
'/' +
'PIC_' + category +
'_Input_Combiner.pdf')
818 binCounter = int(NbinsCategories + 1)
819 dilutionB02 = array(
'd', [0] * binCounter)
820 dilutionB0bar2 = array(
'd', [0] * binCounter)
821 purityB0 = array(
'd', [0] * binCounter)
822 purityB0bar = array(
'd', [0] * binCounter)
823 signal = array(
'd', [0] * binCounter)
824 back = array(
'd', [0] * binCounter)
825 weight = array(
'd', [0] * binCounter)
827 for i
in range(1, binCounter):
829 signal[i] = hist_signal.GetBinContent(i)
830 back[i] = hist_background.GetBinContent(i)
831 weight[i] = signal[i] + back[i]
834 if signal[i] + back[i] == 0:
838 dilutionB0bar2[i] = 0
841 purityB0[i] = signal[i] / (signal[i] + back[i])
842 dilutionB02[i] = -1 + 2 * signal[i] / (signal[i] + back[i])
844 purityB0bar[i] = back[i] / (signal[i] + back[i])
845 dilutionB0bar2[i] = -1 + 2 * back[i] / (signal[i] + back[i])
848 hist_probB0.Fill(purityB0[i], signal[i])
849 hist_probB0bar.Fill(purityB0bar[i], back[i])
852 hist_qrB0.Fill(dilutionB02[i], signal[i])
853 hist_qrB0bar.Fill(dilutionB0bar2[i], back[i])
856 histo_entries_per_binB0.Fill(abs(dilutionB02[i]), signal[i])
857 histo_entries_per_binB0bar.Fill(abs(dilutionB0bar2[i]), back[i])
859 hist_avr_rB0.Fill(abs(dilutionB02[i]), abs(dilutionB02[i]) * signal[i])
860 hist_avr_rB0bar.Fill(abs(dilutionB0bar2[i]), abs(dilutionB0bar2[i]) * back[i])
862 hist_ms_rB0.Fill(abs(dilutionB02[i]), abs(dilutionB02[i] * dilutionB02[i]) * signal[i])
863 hist_ms_rB0bar.Fill(abs(dilutionB0bar2[i]), abs(dilutionB0bar2[i] * dilutionB02[i]) * back[i])
866 hist_avr_rB0.Divide(histo_entries_per_binB0)
867 hist_avr_rB0bar.Divide(histo_entries_per_binB0bar)
869 hist_ms_rB0.Divide(histo_entries_per_binB0)
870 hist_ms_rB0bar.Divide(histo_entries_per_binB0bar)
874 total_entriesB0 = total_notTagged / 2
875 total_entriesB0bar = total_notTagged / 2
876 for i
in range(1, r_size):
877 total_entriesB0 = total_entriesB0 + histo_entries_per_binB0.GetBinContent(i)
878 total_entriesB0bar = total_entriesB0bar + histo_entries_per_binB0bar.GetBinContent(i)
882 uncertainty_eff_effB0 = 0
883 uncertainty_eff_effB0bar = 0
884 uncertainty_eff_effAverage = 0
885 diff_eff_Uncertainty = 0
886 event_fractionB0 = array(
'f', [0] * r_size)
887 event_fractionB0bar = array(
'f', [0] * r_size)
888 rvalueB0 = array(
'f', [0] * r_size)
889 rvalueB0bar = array(
'f', [0] * r_size)
890 rvalueStdB0 = array(
'f', [0] * r_size)
891 rvalueStdB0bar = array(
'f', [0] * r_size)
893 entriesBoth = array(
'f', [0] * r_size)
894 entriesB0 = array(
'f', [0] * r_size)
895 entriesB0bar = array(
'f', [0] * r_size)
896 iEffEfficiencyB0Uncertainty = array(
'f', [0] * r_size)
897 iEffEfficiencyB0barUncertainty = array(
'f', [0] * r_size)
898 iDeltaEffEfficiencyUncertainty = array(
'f', [0] * r_size)
900 for i
in range(1, r_size):
902 entriesBoth[i] = entriesB0bar[i] + entriesB0[i]
903 entriesB0[i] = histo_entries_per_binB0.GetBinContent(i)
904 entriesB0bar[i] = histo_entries_per_binB0bar.GetBinContent(i)
905 event_fractionB0[i] = entriesB0[i] / total_entriesB0
906 event_fractionB0bar[i] = entriesB0bar[i] / total_entriesB0bar
911 rvalueB0[i] = hist_avr_rB0.GetBinContent(i)
912 rvalueB0bar[i] = hist_avr_rB0bar.GetBinContent(i)
915 rvalueStdB0bar[i] = 0
918 rvalueStdB0[i] = math.sqrt(abs(hist_ms_rB0.GetBinContent(
919 i) - (hist_avr_rB0.GetBinContent(i))**2)) / math.sqrt(entriesB0[i] - 1)
921 if entriesB0bar[i] > 1:
922 rvalueStdB0bar[i] = math.sqrt(abs(hist_ms_rB0bar.GetBinContent(
923 i) - (hist_avr_rB0bar.GetBinContent(i))**2)) / math.sqrt(entriesB0bar[i] - 1)
926 tot_eff_effB0 = tot_eff_effB0 + event_fractionB0[i] * rvalueB0[i] \
928 tot_eff_effB0bar = tot_eff_effB0bar + event_fractionB0bar[i] * rvalueB0bar[i] \
931 iEffEfficiencyB0Uncertainty[i] = rvalueB0[i] * \
932 math.sqrt((2 * total_entriesB0 * entriesB0[i] * rvalueStdB0[i])**2 +
933 rvalueB0[i]**2 * entriesB0[i] *
934 (total_entriesB0 * (total_entriesB0 - entriesB0[i]) +
935 entriesB0[i] * total_notTagged)) / (total_entriesB0**2)
936 iEffEfficiencyB0barUncertainty[i] = rvalueB0bar[i] * \
937 math.sqrt((2 * total_entriesB0bar * entriesB0bar[i] * rvalueStdB0bar[i])**2 +
938 rvalueB0bar[i]**2 * entriesB0bar[i] *
939 (total_entriesB0bar * (total_entriesB0bar - entriesB0bar[i]) +
940 entriesB0bar[i] * total_notTagged)) / (total_entriesB0bar**2)
942 iDeltaEffEfficiencyUncertainty[i] = math.sqrt(iEffEfficiencyB0Uncertainty[i]**2 + iEffEfficiencyB0barUncertainty[i]**2)
944 diff_eff_Uncertainty = diff_eff_Uncertainty + iDeltaEffEfficiencyUncertainty[i]**2
946 uncertainty_eff_effB0 = uncertainty_eff_effB0 + iEffEfficiencyB0Uncertainty[i]**2
947 uncertainty_eff_effB0bar = uncertainty_eff_effB0bar + iEffEfficiencyB0barUncertainty[i]**2
949 effDiff = tot_eff_effB0 - tot_eff_effB0bar
950 effAverage = (tot_eff_effB0 + tot_eff_effB0bar) / 2
952 uncertainty_eff_effB0 = math.sqrt(uncertainty_eff_effB0)
953 uncertainty_eff_effB0bar = math.sqrt(uncertainty_eff_effB0bar)
954 diff_eff_Uncertainty = math.sqrt(diff_eff_Uncertainty)
955 uncertainty_eff_effAverage = diff_eff_Uncertainty / 2
957 '{:<25}'.format(
"* " + category) +
' B0-Eff=' +
958 '{: 8.2f}'.format(tot_eff_effB0 * 100) +
" +-" +
'{: 4.2f}'.format(uncertainty_eff_effB0 * 100) +
961 '{: 8.2f}'.format(tot_eff_effB0bar * 100) +
" +-" +
'{: 4.2f}'.format(uncertainty_eff_effB0bar * 100) +
964 '{: 8.2f}'.format(effAverage * 100) +
" +- " +
'{:4.2f}'.format(uncertainty_eff_effAverage * 100) +
' %' +
966 '{: 8.2f}'.format(effDiff * 100) +
" +- " +
'{:4.2f}'.format(diff_eff_Uncertainty * 100) +
' % *')
980 categoriesPerformance.append((category, effAverage, uncertainty_eff_effAverage, effDiff, diff_eff_Uncertainty))
981 with Quiet(ROOT.kError):
990 print(
'**************************************************************************************************************************' +
991 '************************')
993 print(
'Table For B2TIP')
995 print(
r'\begin{tabular}{ l r r }')
997 print(
r'Categories & $\varepsilon_\text{eff} \pm \delta\varepsilon_\text{eff} $& ' +
998 r'$\Delta\varepsilon_\text{eff} \pm \delta\Delta\varepsilon_\text{eff}$\\ \hline\hline')
999 for (category, effAverage, uncertainty_eff_effAverage, effDiff, diff_eff_Uncertainty)
in categoriesPerformance:
1001 '{:<23}'.format(category) +
1003 '{: 6.2f}'.format(effAverage * 100) +
r" \pm " +
'{:4.2f}'.format(uncertainty_eff_effAverage * 100) +
1005 '{: 6.2f}'.format(effDiff * 100) +
r" \pm " +
'{:4.2f}'.format(diff_eff_Uncertainty * 100) +
1008 print(
r'\end{tabular}')
1009 B2INFO(
'qp Output Histograms in pdf format saved at: ' + workingDirectory)
1010 with open(
"categoriesPerformance.pkl",
"wb")
as f:
1011 pickle.dump(categoriesPerformance, f)