12 import tensorflow
as tf
20 def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
22 Return simple tensorflow model
25 gpus = tf.config.list_physical_devices(
'GPU')
28 tf.config.experimental.set_memory_growth(gpu,
True)
30 class my_model(tf.Module):
32 def __init__(self, **kwargs):
33 super().__init__(**kwargs)
35 self.optimizer = tf.optimizers.Adam(0.01)
36 shape = [number_of_features, number_of_features]
37 self.W_hidden1 = tf.Variable(
38 tf.random.truncated_normal(shape, stddev=1.0 / np.sqrt(float(shape[0]))),
39 name=
'hidden1_weights')
40 self.b_hidden1 = tf.Variable(tf.zeros(shape=[shape[1]]), name=
'hidden1_biases')
42 shape = [number_of_features, 1]
43 self.W_activation = tf.Variable(
44 tf.random.truncated_normal(shape, stddev=1.0 / np.sqrt(float(shape[0]))),
45 name=
'activation_weights')
46 self.b_activation = tf.Variable(tf.zeros(shape=[shape[1]]), name=
'activation_biases')
48 @tf.function(input_signature=[tf.TensorSpec(shape=[None, number_of_features], dtype=tf.float32)])
49 def __call__(self, x):
52 def dense(x, W, b, activation_function):
53 return activation_function(tf.matmul(x, W) + b)
55 hidden1 = dense(self.clean_nans(x), self.W_hidden1, self.b_hidden1, tf.nn.sigmoid)
56 activation = dense(hidden1, self.W_activation, self.b_activation, tf.nn.sigmoid)
60 def clean_nans(self, x):
61 return tf.where(tf.math.is_nan(x), tf.zeros_like(x), x)
64 def loss(self, predicted_y, target_y, w):
66 diff_from_truth = tf.where(target_y == 1., predicted_y, 1. - predicted_y)
67 return - tf.reduce_sum(w * tf.math.log(diff_from_truth + epsilon)) / tf.reduce_sum(w)
69 state = State(model=my_model())
73 if __name__ ==
"__main__":
74 from basf2
import conditions
76 conditions.testing_payloads = [
77 'localdb/database.txt'
80 general_options = basf2_mva.GeneralOptions()
81 general_options.m_datafiles = basf2_mva.vector(
"train.root")
82 general_options.m_identifier =
"Simple"
83 general_options.m_treename =
"tree"
84 variables = [
'M',
'p',
'pt',
'pz',
85 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
86 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
87 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
88 'chiProb',
'dr',
'dz',
89 'daughter(0, dr)',
'daughter(1, dr)',
90 'daughter(0, dz)',
'daughter(1, dz)',
91 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
92 'daughter(0, kaonID)',
'daughter(0, pionID)',
93 'daughterInvM(0, 1)',
'daughterInvM(0, 2)',
'daughterInvM(1, 2)']
94 general_options.m_variables = basf2_mva.vector(*variables)
95 general_options.m_target_variable =
"isSignal"
97 specific_options = basf2_mva.PythonOptions()
98 specific_options.m_framework =
"tensorflow"
99 specific_options.m_steering_file =
'mva/examples/tensorflow/simple.py'
100 specific_options.m_nIterations = 100
101 specific_options.m_mini_batch_size = 100
102 specific_options.m_normalize =
True
103 training_start = time.time()
104 basf2_mva.teacher(general_options, specific_options)
105 training_stop = time.time()
106 training_time = training_stop - training_start
108 inference_start = time.time()
109 test_data = [
"test.root"] * 10
110 p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
111 inference_stop = time.time()
112 inference_time = inference_stop - inference_start
114 print(
"Tensorflow", training_time, inference_time, auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)