15 if __name__ == 
"__main__":
 
   16     from basf2 
import conditions
 
   18     conditions.testing_payloads = [
 
   19         'localdb/database.txt' 
   22     variables = [
'M', 
'p', 
'pt', 
'pz',
 
   23                  'daughter(0, p)', 
'daughter(0, pz)', 
'daughter(0, pt)',
 
   24                  'daughter(1, p)', 
'daughter(1, pz)', 
'daughter(1, pt)',
 
   25                  'daughter(2, p)', 
'daughter(2, pz)', 
'daughter(2, pt)',
 
   26                  'chiProb', 
'dr', 
'dz',
 
   27                  'daughter(0, dr)', 
'daughter(1, dr)',
 
   28                  'daughter(0, dz)', 
'daughter(1, dz)',
 
   29                  'daughter(0, chiProb)', 
'daughter(1, chiProb)', 
'daughter(2, chiProb)',
 
   30                  'daughter(0, kaonID)', 
'daughter(0, pionID)',
 
   31                  'daughterInvM(0, 1)', 
'daughterInvM(0, 2)', 
'daughterInvM(1, 2)']
 
   34     general_options = basf2_mva.GeneralOptions()
 
   35     general_options.m_datafiles = basf2_mva.vector(
"train.root")
 
   36     general_options.m_treename = 
"tree" 
   37     general_options.m_identifier = 
"TMVA" 
   38     general_options.m_variables = basf2_mva.vector(*variables)
 
   39     general_options.m_target_variable = 
"isSignal" 
   41     tmva_bdt_options = basf2_mva.TMVAOptionsClassification()
 
   42     tmva_bdt_options.m_config = (
"!H:!V:CreateMVAPdfs:NTrees=100:BoostType=Grad:Shrinkage=0.2:UseBaggedBoost:" 
   43                                  "BaggedSampleFraction=0.5:nCuts=1024:MaxDepth=3:IgnoreNegWeightsInTraining")
 
   45     training_start = time.time()
 
   46     basf2_mva.teacher(general_options, tmva_bdt_options)
 
   47     training_stop = time.time()
 
   49     training_time = training_stop - training_start
 
   52     inference_start = time.time()
 
   53     test_data = [
"test.root"] * 10
 
   54     p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
 
   55     inference_stop = time.time()
 
   56     inference_time = inference_stop - inference_start
 
   59     print(
"TMVA", training_time, inference_time, auc)
 
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)