12import tensorflow
as tf
15import uproot3
as uproot
24def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
26 gpus = tf.config.list_physical_devices(
'GPU')
29 tf.config.experimental.set_memory_growth(gpu,
True)
32 if parameters.get(
'lambda', 50) <= 0:
33 number_of_spectators = 0
35 def dense(x, W, b, activation_function):
36 return activation_function(tf.matmul(x, W) + b)
38 class adversarial_model(tf.Module):
40 def __init__(self, **kwargs):
41 super().__init__(**kwargs)
43 self.optimizer = tf.optimizers.Adam(parameters.get(
'learning_rate', 0.01))
46 self.lam = parameters.get(
'lambda', 50)
48 self.K = parameters.get(
'adversary_steps', 13)
50 self.pre_train_epochs = parameters.get(
'pre_train_epochs', 0)
51 self.advarsarial = number_of_spectators > 0
53 def create_layer_variables(shape, name, activation_function=tf.tanh):
54 weights = tf.Variable(
55 tf.random.truncated_normal(shape, stddev=1.0 / np.sqrt(float(shape[0]))),
56 name=f
'{name}_weights')
57 biases = tf.Variable(tf.zeros(shape=[shape[1]]), name=f
'{name}_biases')
58 return weights, biases, activation_function
60 self.inference_layers = [
61 create_layer_variables([number_of_features, number_of_features+1],
62 'inference_hidden', tf.sigmoid),
63 create_layer_variables([number_of_features+1, 1],
64 'inference_sigmoid', tf.sigmoid),
70 self.adversarial_layers = []
71 for i
in range(number_of_spectators):
72 self.adversarial_layers.append([])
73 for i_c, c
in enumerate([
'signal',
'background']):
74 self.adversarial_layers[i].append([
75 create_layer_variables([1, number_of_spectators+1], f
'adversary_hidden_{i}_{c}',
76 activation_function=tf.tanh),
77 create_layer_variables([number_of_spectators + 1, 4], f
'adversary_means_{i}_{c}',
78 activation_function=tf.identity),
79 create_layer_variables([number_of_spectators + 1, 4], f
'adversary_widths_{i}_{c}',
80 activation_function=tf.exp),
81 create_layer_variables([number_of_spectators + 1, 4], f
'adversary_fractions_{i}_{c}',
82 activation_function=tf.identity)
86 @tf.function(input_signature=[tf.TensorSpec(shape=[None, number_of_features], dtype=tf.float32)])
87 def __call__(self, x):
88 for i
in range(len(self.inference_layers)):
89 x = dense(x, *self.inference_layers[i])
93 def inference_loss(self, predicted_y, target_y, w):
94 diff_from_truth = tf.where(target_y == 1., predicted_y, 1. - predicted_y)
95 cross_entropy = - tf.reduce_sum(w * tf.math.log(diff_from_truth + self.epsilon)) / tf.reduce_sum(w)
99 def adversarial_loss(self, predicted_y, s, target_y, w):
101 if number_of_spectators == 0:
102 return tf.constant(0.)
104 adversary_losses = []
105 for i_spectator
in range(number_of_spectators):
106 s_single = tf.slice(s, [0, i_spectator], [-1, 1])
107 for i_c, c
in enumerate([
'signal',
'background']):
110 x = tf.identity(predicted_y)
111 for i_layer
in range(len(self.adversarial_layers[i_spectator][i_c])-3):
112 x = dense(x, *self.adversarial_layers[i_spectator][i_c][i_layer])
115 means = dense(x, *self.adversarial_layers[i_spectator][i_c][-3])
116 widths = dense(x, *self.adversarial_layers[i_spectator][i_c][-2])
117 fractions = dense(x, *self.adversarial_layers[i_spectator][i_c][-1])
119 activation = tf.reduce_sum(tf.nn.softmax(fractions) *
120 tf.exp(-(means-s_single)*(means-s_single) / (2*widths)) /
121 tf.sqrt(2 * np.pi * widths), axis=1)
124 loss = -tf.reduce_sum(target_y*w*tf.math.log(activation + self.epsilon)) / tf.reduce_sum(target_y*w)
126 loss = -tf.reduce_sum((1-target_y)*w*tf.math.log(activation + self.epsilon)) / tf.reduce_sum((1-target_y)*w)
127 adversary_losses.append(loss)
129 return tf.math.add_n(adversary_losses)
132 def loss(self, x, s, y, w):
133 predicted_y = self.__call__(x)
134 inference_loss = self.inference_loss(predicted_y, y, w)
135 adversary_loss = self.adversarial_loss(predicted_y, s, y, w)
136 return inference_loss - self.lam * adversary_loss
138 state = State(model=adversarial_model())
145def partial_fit(state, X, S, y, w, epoch, batch):
147 Pass batches of received data to tensorflow
149 with tf.GradientTape()
as tape:
150 if epoch < state.model.pre_train_epochs:
151 cost = state.model.inference_loss(state.model(X), y, w)
152 trainable_vars = [v
for v
in state.model.trainable_variables
if 'inference' in v.name]
154 elif epoch % state.model.K == 0
or not state.model.advarsarial:
155 cost = state.model.loss(X, S, y, w)
156 trainable_vars = [v
for v
in state.model.trainable_variables
if 'inference' in v.name]
159 cost = state.model.adversarial_loss(state.model(X), S, y, w)
160 trainable_vars = [v
for v
in state.model.trainable_variables
if 'adversary' in v.name]
162 grads = tape.gradient(cost, trainable_vars)
164 state.model.optimizer.apply_gradients(zip(grads, trainable_vars))
166 if batch == 0
and epoch == 0:
167 state.avg_costs = [cost]
168 elif batch != state.nBatches-1:
169 state.avg_costs.append(cost)
172 print(f
"Epoch: {epoch:04d} cost= {np.mean(state.avg_costs):.9f}")
173 state.avg_costs = [cost]
180if __name__ ==
"__main__":
181 from basf2
import conditions, find_file
183 conditions.testing_payloads = [
184 'localdb/database.txt'
187 variables = [
'p',
'pt',
'pz',
'phi',
188 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
'daughter(0, phi)',
189 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
'daughter(1, phi)',
190 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
'daughter(2, phi)',
191 'chiProb',
'dr',
'dz',
'dphi',
192 'daughter(0, dr)',
'daughter(1, dr)',
'daughter(0, dz)',
'daughter(1, dz)',
193 'daughter(0, dphi)',
'daughter(1, dphi)',
194 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
195 'daughter(0, kaonID)',
'daughter(0, pionID)',
'daughter(1, kaonID)',
'daughter(1, pionID)',
196 'daughterAngle(0, 1)',
'daughterAngle(0, 2)',
'daughterAngle(1, 2)',
197 'daughter(2, daughter(0, E))',
'daughter(2, daughter(1, E))',
198 'daughter(2, daughter(0, clusterTiming))',
'daughter(2, daughter(1, clusterTiming))',
199 'daughter(2, daughter(0, clusterE9E25))',
'daughter(2, daughter(1, clusterE9E25))',
200 'daughter(2, daughter(0, minC2TDist))',
'daughter(2, daughter(1, minC2TDist))',
203 variables2 = [
'p',
'pt',
'pz',
'phi',
204 'chiProb',
'dr',
'dz',
'dphi',
205 'daughter(2, chiProb)',
206 'daughter(0, kaonID)',
'daughter(0, pionID)',
'daughter(1, kaonID)',
'daughter(1, pionID)',
207 'daughter(2, daughter(0, E))',
'daughter(2, daughter(1, E))',
208 'daughter(2, daughter(0, clusterTiming))',
'daughter(2, daughter(1, clusterTiming))',
209 'daughter(2, daughter(0, clusterE9E25))',
'daughter(2, daughter(1, clusterE9E25))',
210 'daughter(2, daughter(0, minC2TDist))',
'daughter(2, daughter(1, minC2TDist))']
212 train_file = find_file(
"mva/train_D0toKpipi.root",
"examples")
213 test_file = find_file(
"mva/test_D0toKpipi.root",
"examples")
215 training_data = basf2_mva.vector(train_file)
216 testing_data = basf2_mva.vector(test_file)
218 general_options = basf2_mva.GeneralOptions()
219 general_options.m_datafiles = training_data
220 general_options.m_treename =
"tree"
221 general_options.m_variables = basf2_mva.vector(*variables)
222 general_options.m_spectators = basf2_mva.vector(
'daughterInvM(0, 1)',
'daughterInvM(0, 2)')
223 general_options.m_target_variable =
"isSignal"
224 general_options.m_identifier =
"tensorflow"
226 specific_options = basf2_mva.PythonOptions()
227 specific_options.m_framework =
"tensorflow"
228 specific_options.m_steering_file =
'mva/examples/orthogonal_discriminators/tensorflow_adversary.py'
229 specific_options.m_normalize =
True
230 specific_options.m_nIterations = 1000
231 specific_options.m_mini_batch_size = 400
232 specific_options.m_config =
'{"pre_train_epochs" : 50, "adversary_steps": 7, '\
233 ' "learning_rate": 0.001, "lambda": 0.01}'
234 basf2_mva.teacher(general_options, specific_options)
237 p, t = method.apply_expert(testing_data, general_options.m_treename)
240 results[
'adversarial'] = {
'p': p,
't': t,
'auc': auc}
242 general_options.m_identifier =
"tensorflow_baseline"
243 specific_options.m_nIterations = 200
244 specific_options.m_mini_batch_size = 400
245 specific_options.m_config =
'{"pre_train_epochs" : 0, "adversary_steps": 1, '\
246 ' "learning_rate": 0.001, "lambda": -1.0}'
247 basf2_mva.teacher(general_options, specific_options)
250 p, t = method.apply_expert(testing_data, general_options.m_treename)
252 results[
'baseline'] = {
'p': p,
't': t,
'auc': auc}
254 general_options.m_variables = basf2_mva.vector(*variables2)
255 general_options.m_identifier =
"tensorflow_feature_drop"
256 specific_options.m_nIterations = 200
257 specific_options.m_mini_batch_size = 400
258 specific_options.m_config =
'{"pre_train_epochs" : 0, "adversary_steps": 1, '\
259 ' "learning_rate": 0.001, "lambda": -1.0}'
260 basf2_mva.teacher(general_options, specific_options)
263 p, t = method.apply_expert(testing_data, general_options.m_treename)
265 results[
'featureDrop'] = {
'p': p,
't': t,
'auc': auc}
267 test_tree = uproot.open(test_file)[
'tree']
268 invMassDaughter01 = test_tree.array(
'daughterInvM__bo0__cm__sp1__bc')
269 invMassDaughter02 = test_tree.array(
'daughterInvM__bo0__cm__sp2__bc')
270 isSignal = test_tree.array(
'isSignal').astype(np.int)
272 def print_summary(name, data):
274 def get_corr(p, var, isSignal, sig=True):
276 isSignal = (1 - isSignal)
277 signal_mask = np.where(isSignal)
279 var = var[signal_mask]
280 return np.corrcoef(p, var)[0, 1]
283 print(f
'auc: {data["auc"]:.3f}')
284 print(
'Correlations between probability and spectator variables:')
286 f
'Sig: {get_corr(data["p"], invMassDaughter01, isSignal, True):.3f},'
287 f
' {get_corr(data["p"], invMassDaughter02, isSignal, True):.3f}')
289 f
'Bkg: {get_corr(data["p"], invMassDaughter01, isSignal, False):.3f},'
290 f
' {get_corr(data["p"], invMassDaughter02, isSignal, False):.3f}\n')
292 print_summary(
'Baseline', results[
'baseline'])
293 print_summary(
'Adversarial', results[
'adversarial'])
294 print_summary(
'Feature Drop', results[
'featureDrop'])
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)