18def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
 
   20    Create SKLearn classifier and store it in a State object 
   22    from sklearn.neural_network 
import MLPClassifier
 
   24    if isinstance(parameters, collections.abc.Mapping):
 
   25        clf = MLPClassifier(**parameters)
 
   26    elif isinstance(parameters, collections.abc.Sequence):
 
   27        clf = MLPClassifier(*parameters)
 
   35    Merge received data together and fit estimator. 
   36    Neural network do not support weights at the moment (sklearn 0.18.1). 
   37    So these are ignored here! 
   39    state.estimator = state.estimator.fit(np.vstack(state.X), np.hstack(state.y))
 
   40    return state.estimator
 
   43if __name__ == 
"__main__":
 
   44    from basf2 
import conditions, find_file
 
   46    conditions.testing_payloads = [
 
   47        'localdb/database.txt' 
   50    variables = [
'M', 
'p', 
'pt', 
'pz',
 
   51                 'daughter(0, p)', 
'daughter(0, pz)', 
'daughter(0, pt)',
 
   52                 'daughter(1, p)', 
'daughter(1, pz)', 
'daughter(1, pt)',
 
   53                 'daughter(2, p)', 
'daughter(2, pz)', 
'daughter(2, pt)',
 
   54                 'chiProb', 
'dr', 
'dz',
 
   55                 'daughter(0, dr)', 
'daughter(1, dr)',
 
   56                 'daughter(0, dz)', 
'daughter(1, dz)',
 
   57                 'daughter(0, chiProb)', 
'daughter(1, chiProb)', 
'daughter(2, chiProb)',
 
   58                 'daughter(0, kaonID)', 
'daughter(0, pionID)',
 
   59                 'daughterInvM(0, 1)', 
'daughterInvM(0, 2)', 
'daughterInvM(1, 2)']
 
   61    train_file = find_file(
"mva/train_D0toKpipi.root", 
"examples")
 
   62    test_file = find_file(
"mva/test_D0toKpipi.root", 
"examples")
 
   64    training_data = basf2_mva.vector(train_file)
 
   65    testing_data = basf2_mva.vector(test_file)
 
   68    general_options = basf2_mva.GeneralOptions()
 
   69    general_options.m_datafiles = training_data
 
   70    general_options.m_treename = 
"tree" 
   71    general_options.m_identifier = 
"SKLearn-NN" 
   72    general_options.m_variables = basf2_mva.vector(*variables)
 
   73    general_options.m_target_variable = 
"isSignal" 
   75    sklearn_nn_options = basf2_mva.PythonOptions()
 
   76    sklearn_nn_options.m_framework = 
"sklearn" 
   77    sklearn_nn_options.m_steering_file = 
'mva/examples/python/sklearn_mlpclassifier.py' 
   78    param = 
'{"hidden_layer_sizes": [29], "activation": "logistic", "max_iter": 100, "solver": "adam", "batch_size": 100}' 
   79    sklearn_nn_options.m_config = param
 
   80    sklearn_nn_options.m_normalize = 
True 
   82    training_start = time.time()
 
   83    basf2_mva.teacher(general_options, sklearn_nn_options)
 
   84    training_stop = time.time()
 
   85    training_time = training_stop - training_start
 
   87    inference_start = time.time()
 
   88    p, t = method.apply_expert(testing_data, general_options.m_treename)
 
   89    inference_stop = time.time()
 
   90    inference_time = inference_stop - inference_start
 
   92    print(
"SKLearn", training_time, inference_time, auc)
 
calculate_auc_efficiency_vs_background_retention(p, t, w=None)