15if __name__ == 
"__main__":
 
   16    from basf2 
import conditions, find_file
 
   18    conditions.testing_payloads = [
 
   19        'localdb/database.txt' 
   22    train_file = find_file(
"mva/train_D0toKpipi.root", 
"examples")
 
   23    test_file = find_file(
"mva/test_D0toKpipi.root", 
"examples")
 
   25    training_data = basf2_mva.vector(train_file)
 
   26    testing_data = basf2_mva.vector(test_file)
 
   28    variables = [
'M', 
'p', 
'pt', 
'pz',
 
   29                 'daughter(0, p)', 
'daughter(0, pz)', 
'daughter(0, pt)',
 
   30                 'daughter(1, p)', 
'daughter(1, pz)', 
'daughter(1, pt)',
 
   31                 'daughter(2, p)', 
'daughter(2, pz)', 
'daughter(2, pt)',
 
   32                 'chiProb', 
'dr', 
'dz',
 
   33                 'daughter(0, dr)', 
'daughter(1, dr)',
 
   34                 'daughter(0, dz)', 
'daughter(1, dz)',
 
   35                 'daughter(0, chiProb)', 
'daughter(1, chiProb)', 
'daughter(2, chiProb)',
 
   36                 'daughter(0, kaonID)', 
'daughter(0, pionID)',
 
   37                 'daughterInvM(0, 1)', 
'daughterInvM(0, 2)', 
'daughterInvM(1, 2)']
 
   40    general_options = basf2_mva.GeneralOptions()
 
   41    general_options.m_datafiles = training_data
 
   42    general_options.m_treename = 
"tree" 
   43    general_options.m_identifier = 
"TMVA" 
   44    general_options.m_variables = basf2_mva.vector(*variables)
 
   45    general_options.m_target_variable = 
"isSignal" 
   47    tmva_nn_options = basf2_mva.TMVAOptionsClassification()
 
   48    tmva_nn_options.m_type = 
"MLP" 
   49    tmva_nn_options.m_method = 
"MLP" 
   50    tmva_nn_options.m_config = (
"H:!V:CreateMVAPdfs:VarTransform=N:NCycles=10:HiddenLayers=N+1:TrainingMethod=BFGS")
 
   52    training_start = time.time()
 
   53    basf2_mva.teacher(general_options, tmva_nn_options)
 
   54    training_stop = time.time()
 
   56    training_time = training_stop - training_start
 
   59    inference_start = time.time()
 
   60    p, t = method.apply_expert(testing_data, general_options.m_treename)
 
   61    inference_stop = time.time()
 
   62    inference_time = inference_stop - inference_start
 
   65    print(
"TMVA", training_time, inference_time, auc)
 
calculate_auc_efficiency_vs_background_retention(p, t, w=None)