14from subprocess
import PIPE, run
17variables = [
'p',
'pz',
'daughter(0, p)',
'daughter(0, pz)',
'daughter(1, p)',
'daughter(1, pz)',
18 'chiProb',
'dr',
'dz',
'daughter(0, dr)',
'daughter(1, dr)',
'daughter(0, chiProb)',
'daughter(1, chiProb)',
19 'daughter(0, kaonID)',
'daughter(0, pionID)',
'daughterAngle(0, 1)']
24 b
'CAgSB3B5dG9yY2gaBTIuMi4yOv8BCloKBWlucHV0CgZ3ZWlnaHQKBGJpYXMSBm9'
25 b
'1dHB1dBoFL0dlbW0iBEdlbW0qDwoFYWxwaGEVAACAP6ABASoOCgRiZXRhFQAAgD'
26 b
'+gAQEqDQoGdHJhbnNCGAGgAQISCm1haW5fZ3JhcGgqUAgBCBAQAUIGd2VpZ2h0S'
27 b
'kC4r0M+4XpUPo4GcL16Nms+93VgvTtwTj3ZPfm9vVIWPoqwYT42zTu+5INePlux'
28 b
'Pz3/IT0+utoKPbTI9j28lhC9KhAIARABQgRiaWFzSgQmU0U+WhcKBWlucHV0Eg4'
29 b
'KDAgBEggKAggBCgIIEGIYCgZvdXRwdXQSDgoMCAESCAoCCAEKAggBQgIQEQ=='
32if __name__ ==
"__main__":
36 train_file = basf2.find_file(
'mva/train_D0toKpipi.root',
'examples',
False)
37 test_file = basf2.find_file(
'mva/test_D0toKpipi.root',
'examples',
False)
41 general_options = basf2_mva.GeneralOptions()
42 general_options.m_datafiles = basf2_mva.vector(train_file)
43 general_options.m_treename =
"tree"
44 general_options.m_variables = basf2_mva.vector(*variables)
45 general_options.m_target_variable =
"isSignal"
46 general_options.m_max_events = 200
49 (
'Trivial.xml', basf2_mva.TrivialOptions(),
None),
50 (
'FastBDT.xml', basf2_mva.FastBDTOptions(),
None),
51 (
'TMVAClassification.xml', basf2_mva.TMVAOptionsClassification(),
None),
52 (
'FANN.xml', basf2_mva.FANNOptions(),
None),
53 (
'Python_sklearn.xml', basf2_mva.PythonOptions(),
'sklearn'),
54 (
'Python_xgb.xml', basf2_mva.PythonOptions(),
'xgboost'),
55 (
'Python_tensorflow.xml', basf2_mva.PythonOptions(),
'tensorflow'),
56 (
'Python_torch.xml', basf2_mva.PythonOptions(),
'torch'),
57 (
'ONNX.xml', basf2_mva.ONNXOptions(),
None),
62 for identifier, specific_options, framework
in methods:
63 general_options.m_identifier = identifier
64 if framework
is not None:
65 specific_options.m_framework = framework
66 if isinstance(specific_options, type(basf2_mva.ONNXOptions())):
68 specific_options.m_modelFilename =
"model.onnx"
69 with open(
"model.onnx",
"wb")
as f:
70 f.write(base64.b64decode(onnx_model_b64))
71 basf2_mva.teacher(general_options, specific_options)
73 basf2_mva.expert(basf2_mva.vector(*[i
for i, _, _
in methods]),
74 basf2_mva.vector(train_file),
'tree',
'expert.root')
77 command = f
'basf2_mva_evaluate.py -o latex.pdf -train {train_file}'\
78 f
' -data {test_file} -i {" ".join([i for i, _, _ in methods])}'
81 stdout=PIPE, stderr=PIPE,
82 text=
True, shell=
True)
83 assert result.returncode == 0,
'basf2_mva_evaluate.py failed!'
skip_test(reason, py_case=None)
clean_working_directory()