17 from basf2
import B2ERROR, B2FATAL
19 from ROOT
import Belle2
21 import modularAnalysis
as ma
22 from ROOT
import gSystem
23 gSystem.Load(
'libanalysis.so')
30 def get_variables(particle_list, ranked_variable, variables=None, particleNumber=1):
31 """ creates variable name pattern requested by the basf2 variable getVariableByRank()
33 :param ranked_variable:
35 :param particleNumber:
40 for i_num
in range(1, particleNumber + 1):
41 var_list.append(
'getVariableByRank(' + particle_list +
', ' + ranked_variable +
', ' + var +
', ' +
46 def construct_default_variable_names(particle_lists=None, ranked_variable='p', variables=None, particleNumber=5):
47 """ construct default variables (that are sorted by charge and ranked by momentum)
48 :param particle_lists:
49 :param ranked_variable:
51 :param particleNumber:
54 if particle_lists
is None:
55 particle_lists = [
'pi+:pos_charged',
'pi+:neg_charged']
58 for p_list
in particle_lists:
59 variable_names += get_variables(p_list, ranked_variable, variables, particleNumber)
62 root_compatible_list = []
63 for var
in variable_names:
66 return root_compatible_list
69 def DeepFlavorTagger(particle_lists, mode='expert', working_dir='', uniqueIdentifier='standard', variable_list=None,
70 target='qrCombined', overwrite=False,
71 transform_to_probability=False, signal_fraction=-1.0, classifier_args=None,
72 train_valid_fraction=.92, mva_steering_file='analysis/scripts/dft/tensorflow_dnn_interface.py',
76 Interfacing for the DeepFlavorTagger. This function can be used for training (``teacher``), preparation of
77 training datasets (``sampler``) and inference (``expert``).
79 This function requires reconstructed B meson signal particle list and where an RestOfEvent is built.
81 :param particle_lists: string or list[string], particle list(s) of the reconstructed signal B meson
82 :param mode: string, valid modes are ``expert`` (default), ``teacher``, ``sampler``
83 :param working_dir: string, working directory for the method
84 :param uniqueIdentifier: string, database identifier for the method
85 :param variable_list: list[string], name of the basf2 variables used for discrimination
86 :param target: string, target variable
87 :param overwrite: bool, overwrite already (locally!) existing training
88 :param transform_to_probability: bool, enable a purity transformation to compensate potential over-training,
89 can only be set during training
90 :param signal_fraction: float, (experimental) signal fraction override,
91 transform to output to a probability if an uneven signal/background fraction is used in the training data,
92 can only be set during training
93 :param classifier_args: dictionary, costumized arguments for the mlp
94 possible attributes of the dictionary are:
95 lr_dec_rate: learning rate decay rate
96 lr_init: learning rate initial value
97 mom_init: momentum initial value
98 min_epochs: minimal number of epochs
99 max_epochs: maximal number of epochs
100 stop_epochs: epochs to stop without improvements on the validation set for early stopping
101 batch_size: batch size
102 seed: random seed for tensorflow
103 layers: [[layer name, activation function, input_width, output_width, init_bias, init_weights],..]
104 wd_coeffs: weight decay coefficients, length of layers
105 cuda_visible_devices: selection of cuda devices
106 tensorboard_dir: addition directory for logging the training process
107 :param train_valid_fraction: float, train-valid fraction (.92). If transform to probability is
108 enabled, train valid fraction will be splitted to a test set (.5)
109 :param maskName: get ROE particles from a specified ROE mask
110 :param path: basf2 path obj
114 if isinstance(particle_lists, str):
115 particle_lists = [particle_lists]
117 if mode
not in [
'expert',
'teacher',
'sampler']:
118 B2FATAL(
'Invalid mode %s' % mode)
120 if variable_list
is None and mode
in [
'sampler',
'teacher']:
121 variable_list = [
'useCMSFrame(p)',
'useCMSFrame(cosTheta)',
'useCMSFrame(phi)',
'Kid',
'eid',
'muid',
'prid',
122 'nCDCHits',
'nPXDHits',
'nSVDHits',
'dz',
'dr',
'chiProb']
124 if variable_list
is not None and mode
is 'expert':
125 B2ERROR(
'DFT: Variables from identifier file are used. Input variables will be ignored.')
127 if classifier_args
is None:
130 assert isinstance(classifier_args, dict)
132 classifier_args[
'transform_to_prob'] = transform_to_probability
134 output_file_name = os.path.join(working_dir, uniqueIdentifier +
'_training_data.root')
137 roe_path = basf2.create_path()
138 dead_end_path = basf2.create_path()
141 extension = particle_lists[0].replace(
':',
'_to_')
142 roe_particle_list_cut =
''
143 roe_particle_list =
'pi+:dft' +
'_' + extension
145 tree_name =
'dft_variables'
148 ma.signalSideParticleListsFilter(particle_lists,
'hasRestOfEventTracks > 0', roe_path, dead_end_path)
153 ma.fillParticleList(roe_particle_list, roe_particle_list_cut, path=roe_path)
155 dft_particle_lists = [
'pi+:pos_charged',
'pi+:neg_charged']
157 pos_cut =
'charge > 0 and isInRestOfEvent == 1 and passesROEMask(' + maskName +
') > 0.5 and p < infinity'
158 neg_cut =
'charge < 0 and isInRestOfEvent == 1 and passesROEMask(' + maskName +
') > 0.5 and p < infinity'
160 ma.cutAndCopyList(dft_particle_lists[0], roe_particle_list, pos_cut, writeOut=
True, path=roe_path)
161 ma.cutAndCopyList(dft_particle_lists[1], roe_particle_list, neg_cut, writeOut=
True, path=roe_path)
168 if mode
is not 'expert':
169 features = get_variables(dft_particle_lists[0], rank_variable, variable_list, particleNumber=5)
170 features += get_variables(dft_particle_lists[1], rank_variable, variable_list, particleNumber=5)
172 for particles
in dft_particle_lists:
173 ma.rankByHighest(particles, rank_variable, path=roe_path)
175 if mode
is 'sampler':
176 if os.path.isfile(output_file_name)
and not overwrite:
177 B2FATAL(
'Outputfile %s already exists. Aborting writeout.' % output_file_name)
180 all_variables = features + [target]
183 ma.variablesToNtuple(
'', all_variables, tree_name, output_file_name, roe_path)
186 extern_command =
'basf2_mva_teacher --datafile {output_file_name} --treename {tree_name}' \
187 ' --identifier {identifier} --variables "{variables_string}" --target_variable {target}' \
188 ' --method Python --training_fraction {fraction}' \
189 " --config '{classifier_args}' --framework tensorflow" \
190 ' --steering_file {steering_file}'\
191 ''.format(output_file_name=output_file_name, tree_name=tree_name,
192 identifier=uniqueIdentifier,
193 variables_string=
'" "'.join(features), target=target,
194 classifier_args=json.dumps(classifier_args), fraction=train_valid_fraction,
195 steering_file=mva_steering_file)
197 with open(os.path.join(working_dir, uniqueIdentifier +
'_teacher_command'),
'w')
as f:
198 f.write(extern_command)
200 elif mode
is 'teacher':
201 if not os.path.isfile(output_file_name):
202 B2FATAL(
'There is no training data file available. Run flavor tagger in sampler mode first.')
203 general_options = basf2_mva.GeneralOptions()
204 general_options.m_datafiles = basf2_mva.vector(output_file_name)
206 general_options.m_treename = tree_name
207 general_options.m_target_variable = target
208 general_options.m_variables = basf2_mva.vector(*features)
210 general_options.m_identifier = uniqueIdentifier
212 specific_options = basf2_mva.PythonOptions()
213 specific_options.m_framework =
'tensorflow'
214 specific_options.m_steering_file = mva_steering_file
215 specific_options.m_training_fraction = train_valid_fraction
217 specific_options.m_config = json.dumps(classifier_args)
219 basf2_mva.teacher(general_options, specific_options)
221 elif mode
is 'expert':
223 flavorTaggerInfoBuilder = basf2.register_module(
'FlavorTaggerInfoBuilder')
224 path.add_module(flavorTaggerInfoBuilder)
226 expert_module = basf2.register_module(
'MVAExpert')
227 expert_module.param(
'listNames', particle_lists)
228 expert_module.param(
'identifier', uniqueIdentifier)
230 expert_module.param(
'extraInfoName',
'dnn_output')
231 expert_module.param(
'signalFraction', signal_fraction)
233 roe_path.add_module(expert_module)
235 flavorTaggerInfoFiller = basf2.register_module(
'FlavorTaggerInfoFiller')
236 flavorTaggerInfoFiller.param(
'DNNmlp',
True)
237 roe_path.add_module(flavorTaggerInfoFiller)
240 vu._variablemanager.addAlias(
'DNN_qrCombined',
'qrOutput(DNN)')
242 path.for_each(
'RestOfEvent',
'RestOfEvents', roe_path)