4 airflow script for PXD hot/dead pixel masking.
5 Author: qingyuan.liu@desy.de
10 from prompt.utils import filter_by_max_files_per_run, filter_by_max_events_per_run
11 from prompt
import CalibrationSettings, input_data_filters
12 from caf.utils
import IoV
13 from itertools
import groupby
14 from itertools
import chain
18 settings = CalibrationSettings(name=
"PXD hot/dead pixel calibration",
19 expert_username=
"qyliu",
21 input_data_formats=[
"raw"],
22 input_data_names=[
"beamorphysics",
"cosmic"],
25 input_data_filters[
"Data Tag"][
"bhabha_all_calib"],
26 input_data_filters[
"Data Tag"][
"gamma_gamma_calib"],
27 input_data_filters[
"Data Tag"][
"hadron_calib"],
28 input_data_filters[
"Data Tag"][
"offip_calib"],
29 input_data_filters[
"Data Tag"][
"cosmic_calib"],
30 input_data_filters[
"Beam Energy"][
"4S"],
31 input_data_filters[
"Beam Energy"][
"Continuum"],
32 input_data_filters[
"Beam Energy"][
"Scan"],
33 input_data_filters[
"Run Type"][
"physics"],
34 input_data_filters[
"Data Quality Tag"][
"Good Or Recoverable"]],
35 "cosmic": [input_data_filters[
"Run Type"][
"cosmic"]]},
37 "max_events_per_run": 400000,
38 "max_files_per_run": 20,
43 def get_calibrations(input_data, **kwargs):
46 input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
47 Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
48 assigning to calibration.files_to_iov
50 **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
51 backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
52 release explicitly if you want to.
54 Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
55 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
58 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
62 requested_iov = kwargs.get(
"requested_iov",
None)
63 expert_config = kwargs.get(
"expert_config")
64 cal_kwargs = expert_config.get(
"kwargs", {})
65 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
66 expert_config = kwargs.get(
"expert_config")
67 max_events_per_run = expert_config[
"max_events_per_run"]
68 max_files_per_run = expert_config[
"max_files_per_run"]
69 min_files_per_chunk = 10
70 min_events_per_file = 1000
73 file_to_iov_physics = input_data[
"beamorphysics"]
74 file_to_iov_cosmics = input_data[
"cosmic"]
78 if max_events_per_run <= 0:
79 basf2.B2INFO(f
"Reducing to a maximum of {max_files_per_run} files per run.")
80 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics,
81 max_files_per_run, min_events_per_file)
82 reduced_file_to_iov_cosmics = filter_by_max_files_per_run(file_to_iov_cosmics,
83 max_files_per_run, min_events_per_file)
85 basf2.B2INFO(f
"Reducing to a maximum of {max_events_per_run} events per run.")
86 reduced_file_to_iov_physics = filter_by_max_events_per_run(file_to_iov_physics,
87 max_events_per_run, random_select=
True)
88 reduced_file_to_iov_cosmics = filter_by_max_events_per_run(file_to_iov_cosmics,
89 max_events_per_run, random_select=
True)
92 iov_set_physics = set(reduced_file_to_iov_physics.values())
93 iov_set_cosmics = set(reduced_file_to_iov_cosmics.values())
95 iov_list_cosmics = list(sorted(iov_set_cosmics))
97 iov_list_all = list(sorted(iov_set_cosmics | iov_set_physics))
99 exp_set = set([iov.exp_low
for iov
in iov_list_all])
101 for exp
in sorted(exp_set):
102 chunks_exp += [list(g)
for k, g
in groupby(iov_list_all,
lambda x: x.exp_low == exp)
if k]
106 for chunk_exp
in chunks_exp:
107 chunks_phy += [list(g)
for k, g
in groupby(chunk_exp,
lambda x: x
in iov_list_cosmics)
if not k]
108 chunks_cosmic += [list(g)
for k, g
in groupby(chunk_exp,
lambda x: x
in iov_list_cosmics)
if k]
113 chunk_list = chunks_phy
114 input_data = reduced_file_to_iov_physics
116 for ichunk, chunk
in enumerate(chunk_list):
117 first_iov = IoV(chunk[0].exp_low, chunk[0].run_low, -1, -1)
118 last_iov = IoV(chunk[-1].exp_low, chunk[-1].run_low, -1, -1)
119 if last_iov < output_iov:
122 input_files = list(chain.from_iterable([list(g)
for k, g
in groupby(
123 input_data,
lambda x: input_data[x]
in chunk)
if k]))
125 if len(input_files) < min_files_per_chunk:
128 specific_iov = first_iov
if iCal > 0
else output_iov
129 basf2.B2INFO(f
"Total number of files actually used as input = {len(input_files)} for the output {specific_iov}")
130 cal = hot_pixel_mask_calibration(
131 cal_name=
"{}_PXDHotPixelMaskCalibration_BeamorPhysics".format(iCal + 1),
132 input_files=input_files,
134 cal.algorithms[0].params = {
"iov_coverage": specific_iov}
140 chunk_list = chunks_cosmic
141 input_data = reduced_file_to_iov_cosmics
142 for ichunk, chunk
in enumerate(chunk_list):
143 first_iov = IoV(chunk[0].exp_low, chunk[0].run_low, chunk[-1].exp_high, chunk[-1].run_high)
144 last_iov = IoV(chunk[-1].exp_low, chunk[-1].run_low, chunk[-1].exp_high, chunk[-1].run_high)
145 if last_iov < output_iov:
149 specific_iov = max(first_iov, IoV(
150 requested_iov.exp_low, requested_iov.run_low, chunk[-1].exp_high, chunk[-1].run_high))
152 specific_iov = first_iov
153 input_files = list(chain.from_iterable([list(g)
for k, g
in groupby(
154 input_data,
lambda x: input_data[x]
in chunk)
if k]))
155 basf2.B2INFO(f
"Total number of files actually used as input = {len(input_files)} for the output {specific_iov}")
156 cal = hot_pixel_mask_calibration(
157 cal_name=
"{}_PXDHotPixelMaskCalibration_Cosmic".format(iCal + 1),
158 input_files=input_files,
161 cal.algorithms[0].params = {
"iov_coverage": specific_iov}
171 total_input_files = len(reduced_file_to_iov_physics) + len(reduced_file_to_iov_cosmics)
174 fraction_of_input_files = len(cal.input_files)/total_input_files
176 cal.max_collector_jobs = ceil(fraction_of_input_files * total_jobs)
177 basf2.B2INFO(f
"{cal.name} will submit a maximum of {cal.max_collector_jobs} batch jobs")