4 airflow script for PXD gain calibration.
5 Author: qingyuan.liu@desy.de
10 from prompt.utils import filter_by_max_files_per_run, filter_by_max_events_per_run
11 from prompt
import CalibrationSettings, input_data_filters
12 from caf.utils
import ExpRun, IoV
13 from itertools
import groupby
14 from itertools
import chain
15 from math
import ceil, inf
16 from prompt.calibrations.caf_beamspot
import settings
as beamspot_calibration
19 settings = CalibrationSettings(name=
"PXD gain calibration",
20 expert_username=
"qyliu",
22 input_data_formats=[
"cdst"],
23 input_data_names=[
"physics"],
26 input_data_filters[
"Data Tag"][
"bhabha_all_calib"],
27 input_data_filters[
"Beam Energy"][
"4S"],
28 input_data_filters[
"Beam Energy"][
"Continuum"],
29 input_data_filters[
"Beam Energy"][
"Scan"],
30 input_data_filters[
"Run Type"][
"physics"],
31 input_data_filters[
"Data Quality Tag"][
"Good"]]},
35 "gain_method":
"analytic",
36 "min_files_per_chunk": 10,
37 "min_events_per_file": 1000,
38 "max_events_per_run": 4000000,
39 "max_files_per_run": 20,
40 "payload_boundaries": []
42 depends_on=[beamspot_calibration])
45 def get_calibrations(input_data, **kwargs):
48 input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
49 Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
50 assigning to calibration.files_to_iov
52 **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
53 backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
54 release explicitly if you want to.
56 Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
57 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
60 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
64 requested_iov = kwargs.get(
"requested_iov",
None)
65 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
67 expert_config = kwargs.get(
"expert_config")
68 gain_method = expert_config[
"gain_method"]
69 debug = expert_config[
"debug"]
70 total_jobs = expert_config[
"total_jobs"]
71 max_events_per_run = expert_config[
"max_events_per_run"]
72 max_files_per_run = expert_config[
"max_files_per_run"]
73 min_files_per_chunk = expert_config[
"min_files_per_chunk"]
74 min_events_per_file = expert_config[
"min_events_per_file"]
75 cal_kwargs = expert_config.get(
"kwargs", {})
78 basf2.B2INFO(f
"Requested iov: {requested_iov} ")
79 basf2.B2INFO(f
"Expert config: {expert_config} ")
83 file_to_iov_physics = input_data[
"physics"]
87 if max_events_per_run < 0:
88 basf2.B2INFO(
"No file reduction applied.")
89 reduced_file_to_iov_physics = file_to_iov_physics
90 elif max_events_per_run == 0:
91 basf2.B2INFO(f
"Reducing to a maximum of {max_files_per_run} files per run.")
92 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics,
93 max_files_per_run, min_events_per_file)
95 basf2.B2INFO(f
"Reducing to a maximum of {max_events_per_run} events per run.")
96 reduced_file_to_iov_physics = filter_by_max_events_per_run(file_to_iov_physics,
97 max_events_per_run, random_select=
True)
100 input_iov_set_physics = set(reduced_file_to_iov_physics.values())
101 exp_set = set([iov.exp_low
for iov
in input_iov_set_physics])
104 payload_boundaries = [ExpRun(output_iov.exp_low, output_iov.run_low)]
105 payload_boundaries.extend([ExpRun(*boundary)
for boundary
in expert_config[
"payload_boundaries"]])
107 payload_boundaries.extend([ExpRun(exp, 0)
for exp
in sorted(exp_set)[1:]])
108 basf2.B2INFO(f
"Final Boundaries: {payload_boundaries}")
111 chunks_head = payload_boundaries
112 chunks_tail = payload_boundaries[1:] + [ExpRun(inf, inf)]
113 iov_chunks = [list(g)
for k, g
in groupby(sorted(input_iov_set_physics),
114 lambda x: [i
for i, j
in zip(chunks_head, chunks_tail)
if i <= x < j])]
117 input_file_to_iov = reduced_file_to_iov_physics
119 for ichunk, chunk
in enumerate(iov_chunks):
120 first_iov = IoV(chunk[0].exp_low, chunk[0].run_low, -1, -1)
121 last_iov = IoV(chunk[-1].exp_low, chunk[-1].run_low, -1, -1)
122 if last_iov < output_iov:
125 input_files = list(chain.from_iterable([list(g)
for k, g
in groupby(
126 input_file_to_iov,
lambda x: input_file_to_iov[x]
in chunk)
if k]))
128 if len(input_files) < min_files_per_chunk:
129 basf2.B2WARNING(f
"No enough file in sub run chunk [{chunk[0]},{chunk[-1]}]: {len(input_files)},\
130 but {min_files_per_chunk} required!")
133 specific_iov = first_iov
if iCal > 0
else output_iov
134 basf2.B2INFO(f
"Total number of files actually used as input = {len(input_files)} for the output {specific_iov}")
135 cal_name = f
"{ichunk+1}_PXDAnalyticGainCalibration"
137 cal = gain_calibration(
139 gain_method=gain_method,
141 input_files=input_files,
143 for alg
in cal.algorithms:
144 alg.params[
"iov_coverage"] = specific_iov
147 basf2.B2INFO(f
"Dry run on Calibration(name={cal_name})")
156 total_input_files = len(reduced_file_to_iov_physics)
159 fraction_of_input_files = len(cal.input_files) / total_input_files
161 cal.max_collector_jobs = ceil(fraction_of_input_files * total_jobs)
162 basf2.B2INFO(f
"{cal.name} will submit a maximum of {cal.max_collector_jobs} batch jobs")