5 import modularAnalysis
as ma
7 import flavorTagger
as ft
8 from variables
import variables
as vm
13 filenumber = sys.argv[1]
16 b2.conditions.prepend_globaltag(
"analysis_tools_release-04-02")
23 environmentType=
"default",
24 filelist=[b2.find_file(f
"starterkit/2021/1111540100_eph3_BGx0_{filenumber}.root",
"examples")],
31 "electronID > 0.1 and dr < 0.5 and abs(dz) < 2 and thetaInCDCAcceptance",
38 "goodFWDGamma",
"passesCut(clusterReg == 1 and clusterE > 0.075)"
41 "goodBRLGamma",
"passesCut(clusterReg == 2 and clusterE > 0.05)"
44 "goodBWDGamma",
"passesCut(clusterReg == 3 and clusterE > 0.1)"
47 "goodGamma",
"passesCut(goodFWDGamma or goodBRLGamma or goodBWDGamma)"
49 ma.fillParticleList(
"gamma:brems",
"goodGamma", path=main)
50 ma.correctBrems(
"e+:corrected",
"e+:uncorrected",
"gamma:brems", path=main)
51 vm.addAlias(
"isBremsCorrected",
"extraInfo(bremsCorrected)")
55 "J/psi:ee -> e+:corrected e-:corrected ?addbrems",
62 "B0 -> J/psi:ee K_S0:merged",
63 cut=
"Mbc > 5.2 and abs(deltaE) < 0.15",
68 ma.matchMCTruth(
"B0", path=main)
71 ma.buildRestOfEvent(
"B0", fillWithMostLikely=
True, path=main)
72 track_based_cuts =
"thetaInCDCAcceptance and pt > 0.075 and dr < 5 and abs(dz) < 10"
73 ecl_based_cuts =
"thetaInCDCAcceptance and E > 0.05"
74 roe_mask = (
"my_mask", track_based_cuts, ecl_based_cuts)
75 ma.appendROEMasks(
"B0", [roe_mask], path=main)
78 ft.flavorTagger([
"B0"], path=main)
81 b2.set_random_seed(
"Belle II StarterKit")
82 ma.rankByHighest(
"B0", variable=
"random", numBest=1, path=main)
87 standard_vars = vc.kinematics + vc.mc_kinematics + vc.mc_truth
88 b_vars += vc.deltae_mbc
89 b_vars += standard_vars
92 roe_kinematics = [
"roeE()",
"roeM()",
"roeP()",
"roeMbc()",
"roeDeltae()"]
93 roe_multiplicities = [
96 "nROE_NeutralHadrons()",
98 b_vars += roe_kinematics + roe_multiplicities
100 for roe_variable
in roe_kinematics + roe_multiplicities:
102 roe_variable_with_mask = roe_variable.replace(
"()",
"(my_mask)")
103 b_vars.append(roe_variable_with_mask)
105 b_vars += ft.flavor_tagging
108 fs_vars = vc.pid + vc.track + vc.track_hits + standard_vars
109 b_vars += vu.create_aliases_for_selected(
110 fs_vars + [
"isBremsCorrected"],
111 "B0 -> [J/psi -> ^e+ ^e-] K_S0",
114 b_vars += vu.create_aliases_for_selected(
115 fs_vars,
"B0 -> J/psi [K_S0 -> ^pi+ ^pi-]", prefix=[
"pip",
"pim"]
118 jpsi_ks_vars = vc.inv_mass + standard_vars
119 b_vars += vu.create_aliases_for_selected(jpsi_ks_vars,
"B0 -> ^J/psi ^K_S0")
122 "Jpsi_M_uncorrected",
"daughter(0, daughterCombination(M,0:0,1:0))"
124 b_vars += [
"Jpsi_M_uncorrected"]
127 cmskinematics = vu.create_aliases(
128 vc.kinematics,
"useCMSFrame({variable})",
"CMS"
130 b_vars += vu.create_aliases_for_selected(
131 cmskinematics,
"^B0 -> [^J/psi -> ^e+ ^e-] [^K_S0 -> ^pi+ ^pi-]"
135 "withBremsCorrection",
136 "passesCut(passesCut(ep_isBremsCorrected == 1) or passesCut(em_isBremsCorrected == 1))",
138 b_vars += [
"withBremsCorrection"]
141 ma.variablesToNtuple(
144 filename=
"Bd2JpsiKS.root",
def stdKshorts(prioritiseV0=True, fitter='TreeFit', path=None)