16 if __name__ ==
"__main__":
17 from basf2
import conditions
19 conditions.testing_payloads = [
20 'localdb/database.txt'
23 variables = [
'p',
'pt',
'pz',
24 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
25 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
26 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
27 'chiProb',
'dr',
'dz',
28 'daughter(0, dr)',
'daughter(1, dr)',
29 'daughter(0, dz)',
'daughter(1, dz)',
30 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
31 'daughter(0, kaonID)',
'daughter(0, pionID)',
32 'daughterInvariantMass(0, 1)',
'daughterInvariantMass(0, 2)',
'daughterInvariantMass(1, 2)']
34 general_options = basf2_mva.GeneralOptions()
35 general_options.m_datafiles = basf2_mva.vector(
"train.root")
36 general_options.m_treename =
"tree"
37 general_options.m_variables = basf2_mva.vector(*variables)
39 general_options.m_spectators = basf2_mva.vector(
'M')
40 general_options.m_target_variable =
"isSignal"
41 general_options.m_identifier =
"HepMLUBoost"
43 specific_options = basf2_mva.PythonOptions()
44 specific_options.m_steering_file =
'mva/examples/python/hep_ml_uboost.py'
48 specific_options.m_config = json.dumps({
'n_neighbors': 5,
'n_estimators': 5})
49 specific_options.m_framework =
'hep_ml'
51 training_start = time.time()
52 basf2_mva.teacher(general_options, specific_options)
53 training_stop = time.time()
54 training_time = training_stop - training_start
56 inference_start = time.time()
57 p, t = method.apply_expert(basf2_mva.vector(
"test.root"), general_options.m_treename)
58 inference_stop = time.time()
59 inference_time = inference_stop - inference_start
61 print(
"HepML", training_time, inference_time, auc)
63 subprocess.call(
'basf2_mva_evaluate.py -c -o latex.pdf -train train.root -data test.root -i HepMLUBoost', shell=
True)
def calculate_roc_auc(p, t)