10 from softwaretrigger
import constants
11 import modularAnalysis
14 from geometry
import check_components
18 def add_online_dqm(path, run_type, dqm_environment, components, dqm_mode, create_hlt_unit_histograms=False):
20 Add DQM plots for a specific run type and dqm environment
24 from daqdqm.collisiondqm
import add_collision_dqm
25 from daqdqm.cosmicdqm
import add_cosmic_dqm
27 if run_type == constants.RunTypes.beam:
28 add_collision_dqm(path, components=components, dqm_environment=dqm_environment,
29 dqm_mode=dqm_mode, create_hlt_unit_histograms=create_hlt_unit_histograms)
30 elif run_type == constants.RunTypes.cosmic:
31 add_cosmic_dqm(path, components=components, dqm_environment=dqm_environment,
32 dqm_mode=dqm_mode, create_hlt_unit_histograms=create_hlt_unit_histograms)
34 basf2.B2FATAL(
"Run type {} not supported.".format(run_type))
36 if dqm_mode
in [
"dont_care",
"all_events"]:
37 path.add_module(
'DelayDQM', title=dqm_environment, histogramDirectoryName=
'DAQ')
40 def add_hlt_dqm(path, run_type, components, dqm_mode, create_hlt_unit_histograms=False):
42 Add all the DQM modules for HLT to the path
47 dqm_environment=constants.Location.hlt.name,
48 components=components,
49 dqm_mode=dqm_mode.name,
50 create_hlt_unit_histograms=create_hlt_unit_histograms)
51 path.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_DQM_' + dqm_mode.name)
54 def add_expressreco_dqm(path, run_type, components, dqm_mode=constants.DQMModes.dont_care.name):
56 Add all the DQM modules for ExpressReco to the path
58 add_online_dqm(path, run_type=run_type, dqm_environment=constants.Location.expressreco.name, components=components,
62 def add_geometry_if_not_present(path):
64 Add the geometry and gearbox module if it was not already added to the path
66 if 'Gearbox' not in path:
67 path.add_module(
'Gearbox')
69 if 'Geometry' not in path:
70 path.add_module(
'Geometry', useDB=
True)
73 def add_store_only_metadata_path(path):
75 Helper function to create a path which deletes (prunes) everything from the data store except
76 things that are really needed, e.g. the event meta data and the results of the software trigger module.
78 After this path was processed, you can not use the data store content any more to do reconstruction (because
79 it is more or less empty), but can only output it to a (S)ROOT file.
81 path.add_module(
"PruneDataStore", matchEntries=constants.ALWAYS_SAVE_OBJECTS).set_name(
"KeepMetaData")
84 def add_store_only_rawdata_path(path, additonal_store_arrays_to_keep=None):
86 Helper function to create a path which deletes (prunes) everything from the data store except
87 raw objects from the detector and things that are really needed, e.g. the event meta data and the results of the
88 software trigger module.
90 After this path was processed, you can not use the data store content any more to do reconstruction (because
91 it is more or less empty), but can only output it to a (S)ROOT file.
93 entries_to_keep = constants.ALWAYS_SAVE_OBJECTS + constants.RAWDATA_OBJECTS
95 if additonal_store_arrays_to_keep:
96 entries_to_keep += additonal_store_arrays_to_keep
98 path.add_module(
"PruneDataStore", matchEntries=entries_to_keep).set_name(
"KeepRawData")
101 def add_filter_software_trigger(path,
102 store_array_debug_prescale=0,
103 use_random_numbers_for_prescale=True):
105 Add the SoftwareTrigger for the filter cuts to the given path.
107 Only the calculation of the cuts is implemented here - the cut logic has to be done
108 using the module return value.
110 :param path: The path to which the module should be added.
111 :param store_array_debug_prescale: When not 0, store each N events the content of the variables needed for the
112 cut calculations in the data store.
113 :param use_random_numbers_for_prescale: If True, the prescales are applied using randomly generated numbers,
114 otherwise are applied using an internal counter.
115 :return: the software trigger module
117 hlt_cut_module = path.add_module(
"SoftwareTrigger",
118 baseIdentifier=
"filter",
119 preScaleStoreDebugOutputToDataStore=store_array_debug_prescale,
120 useRandomNumbersForPreScale=use_random_numbers_for_prescale)
122 path.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_Filter_Calculation')
124 return hlt_cut_module
127 def add_skim_software_trigger(path, store_array_debug_prescale=0):
129 Add the SoftwareTrigger for the skimming (after the filtering) to the given path.
131 Only the calculation of the cuts is implemented here - the cut logic has to be done
133 :param path: The path to which the module should be added.
134 :param store_array_debug_prescale: When not 0, store each N events the content of the variables needed for the
135 cut calculations in the data store.
136 :return: the software trigger module
149 [[clusterReg == 1 and E > 0.03] or [clusterReg == 2 and E > 0.02] or [clusterReg == 3 and E > 0.03]] and \
150 [abs(clusterTiming) < formula(1.0 * clusterErrorTiming) or E > 0.1] and [clusterE1E9 > 0.3 or E > 0.1]',
151 loadPhotonBeamBackgroundMVA=
False, path=path)
154 vertex.kFit(
'pi0:veryLooseFit', 0.0,
'mass', path=path)
155 D0_Cut =
'1.7 < M < 2.1'
156 D0_Ch = [
'K-:dstSkim pi+:dstSkim',
157 'K-:dstSkim pi+:dstSkim pi0:veryLooseFit',
158 'K-:dstSkim pi+:dstSkim pi-:dstSkim pi+:dstSkim',
159 'K_S0:dstSkim pi+:dstSkim pi-:dstSkim']
161 for chID, channel
in enumerate(D0_Ch):
165 Dst_Cut =
'useCMSFrame(p) > 2.2 and massDifference(0) < 0.16'
168 for chID, channel
in enumerate(D0_Ch):
171 Dst_List.append(
'D*+:ch' + str(chID))
175 path.add_module(
"SoftwareTrigger", baseIdentifier=
"skim",
176 preScaleStoreDebugOutputToDataStore=store_array_debug_prescale)
179 path.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_Skim_Calculation')
182 def add_pre_filter_reconstruction(path, run_type, components, **kwargs):
184 Add everything needed to calculation a filter decision and if possible,
185 also do the HLT filtering. This is only possible for beam runs (in the moment).
187 Please note that this function adds the HLT decision, but does not branch
190 check_components(components)
192 if run_type == constants.RunTypes.beam:
195 skipGeometryAdding=
True,
197 components=components,
198 event_abort=hlt_event_abort,
201 elif run_type == constants.RunTypes.cosmic:
203 components=components, **kwargs)
206 basf2.B2FATAL(f
"Run Type {run_type} not supported.")
209 def add_filter_module(path):
211 Add and return a skim module, which has a return value dependent
212 on the final HLT decision.
214 return path.add_module(
"TriggerSkim", triggerLines=[
"software_trigger_cut&all&total_result"])
217 def add_post_filter_reconstruction(path, run_type, components):
219 Add all modules which should run after the HLT decision is taken
220 and only on the accepted events.
221 This includes reconstruction modules not essential
222 to calculate filter decision and then the skim calculation.
224 check_components(components)
226 if run_type == constants.RunTypes.beam:
229 add_skim_software_trigger(path, store_array_debug_prescale=1)
230 elif run_type == constants.RunTypes.cosmic:
231 add_skim_software_trigger(path, store_array_debug_prescale=1)
233 basf2.B2FATAL(f
"Run Type {run_type} not supported.")
236 def hlt_event_abort(module, condition, error_flag):
238 Create a discard path suitable for HLT processing, i.e. set an error flag and
239 keep only the metadata.
242 p.add_module(
"EventErrorFlag", errorFlag=error_flag)
243 add_store_only_metadata_path(p)
244 module.if_value(condition, p, basf2.AfterConditionPath.CONTINUE)
245 if error_flag == ROOT.Belle2.EventMetaData.c_HLTDiscard:
246 p.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_Discard')
def fillParticleList(decayString, cut, writeOut=False, path=None, enforceFitHypothesis=False, loadPhotonsFromKLM=False, loadPhotonBeamBackgroundMVA=False)
def cutAndCopyList(outputListName, inputListName, cut, writeOut=False, path=None)
def reconstructDecay(decayString, cut, dmID=0, writeOut=False, path=None, candidate_limit=None, ignoreIfTooManyCandidates=True, chargeConjugation=True, allowChargeViolation=False)
def copyLists(outputListName, inputListNames, writeOut=False, path=None)
def add_postfilter_reconstruction(path, components=None, pruneTracks=False)
def add_cosmics_reconstruction(path, components=None, pruneTracks=True, skipGeometryAdding=False, eventTimingExtraction=True, addClusterExpertModules=True, merge_tracks=True, use_second_cdc_hits=False, add_muid_hits=False, reconstruct_cdst=False, posttracking=True)
def add_prefilter_reconstruction(path, components=None, add_modules_for_trigger_calculation=True, skipGeometryAdding=False, trackFitHypotheses=None, use_second_cdc_hits=False, add_muid_hits=False, reconstruct_cdst=None, addClusterExpertModules=True, pruneTracks=True, event_abort=default_event_abort, use_random_numbers_for_hlt_prescale=True)
def stdKshorts(prioritiseV0=True, fitter='TreeFit', path=None)
def stdLambdas(prioritiseV0=True, fitter='TreeFit', path=None)
def kFit(list_name, conf_level, fit_type='vertex', constraint='', daughtersUpdate=False, decay_string='', massConstraint=[], smearing=0, path=None)