12 import tensorflow
as tf
20 def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
22 tf.reset_default_graph()
23 x = tf.placeholder(tf.float32, [
None, number_of_features])
24 y = tf.placeholder(tf.float32, [
None, 1])
26 def layer(x, shape, name, unit=tf.sigmoid):
27 with tf.name_scope(name):
28 weights = tf.Variable(tf.truncated_normal(shape, stddev=1.0 / np.sqrt(float(shape[0]))), name=
'weights')
29 biases = tf.Variable(tf.constant(0.0, shape=[shape[1]]), name=
'biases')
30 layer = unit(tf.matmul(x, weights) + biases)
33 inference_hidden1 = layer(x, [number_of_features, number_of_features + 1],
'inference_hidden1')
34 inference_activation = layer(inference_hidden1, [number_of_features + 1, 1],
'inference_sigmoid', unit=tf.sigmoid)
37 inference_loss = -tf.reduce_sum(y * tf.log(inference_activation + epsilon) +
38 (1.0 - y) * tf.log(1 - inference_activation + epsilon))
40 inference_optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
41 inference_minimize = inference_optimizer.minimize(inference_loss)
43 init = tf.global_variables_initializer()
45 config = tf.ConfigProto()
46 config.gpu_options.allow_growth =
True
47 session = tf.Session(config=config)
50 state = State(x, y, inference_activation, inference_loss, inference_minimize, session)
54 def partial_fit(state, X, S, y, w, epoch):
56 Pass received data to tensorflow session
58 feed_dict = {state.x: X, state.y: y}
59 state.session.run(state.optimizer, feed_dict=feed_dict)
62 avg_cost = state.session.run(state.cost, feed_dict=feed_dict)
63 print(
"Epoch:",
'%04d' % (epoch),
"cost=",
"{:.9f}".format(avg_cost))
67 if __name__ ==
"__main__":
68 from basf2
import conditions
70 conditions.testing_payloads = [
71 'localdb/database.txt'
74 general_options = basf2_mva.GeneralOptions()
75 general_options.m_datafiles = basf2_mva.vector(
"train.root")
76 general_options.m_identifier =
"Simple"
77 general_options.m_treename =
"tree"
78 variables = [
'M',
'p',
'pt',
'pz',
79 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
80 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
81 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
82 'chiProb',
'dr',
'dz',
83 'daughter(0, dr)',
'daughter(1, dr)',
84 'daughter(0, dz)',
'daughter(1, dz)',
85 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
86 'daughter(0, kaonID)',
'daughter(0, pionID)',
87 'daughterInvariantMass(0, 1)',
'daughterInvariantMass(0, 2)',
'daughterInvariantMass(1, 2)']
88 general_options.m_variables = basf2_mva.vector(*variables)
89 general_options.m_target_variable =
"isSignal"
91 specific_options = basf2_mva.PythonOptions()
92 specific_options.m_framework =
"tensorflow"
93 specific_options.m_steering_file =
'mva/examples/tensorflow/simple.py'
94 specific_options.m_nIterations = 100
95 specific_options.m_mini_batch_size = 100
96 specific_options.m_normalize =
True
97 training_start = time.time()
98 basf2_mva.teacher(general_options, specific_options)
99 training_stop = time.time()
100 training_time = training_stop - training_start
102 inference_start = time.time()
103 test_data = [
"test.root"] * 10
104 p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
105 inference_stop = time.time()
106 inference_time = inference_stop - inference_start
108 print(
"Tensorflow", training_time, inference_time, auc)
def calculate_roc_auc(p, t)