Belle II Software  release-06-00-14
sklearn_mlpclassifier.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import collections
14 import numpy as np
15 import time
16 
17 
18 def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
19  """
20  Create SKLearn classifier and store it in a State object
21  """
22  from sklearn.neural_network import MLPClassifier
23  from basf2_mva_python_interface.sklearn import State
24  if isinstance(parameters, collections.Mapping):
25  clf = MLPClassifier(**parameters)
26  elif isinstance(parameters, collections.Sequence):
27  clf = MLPClassifier(*parameters)
28  else:
29  clf = MLPClassifier()
30  return State(clf)
31 
32 
33 def end_fit(state):
34  """
35  Merge received data together and fit estimator.
36  Neural network do not support weights at the moment (sklearn 0.18.1).
37  So these are ignored here!
38  """
39  state.estimator = state.estimator.fit(np.vstack(state.X), np.hstack(state.y))
40  return state.estimator
41 
42 
43 if __name__ == "__main__":
44  from basf2 import conditions
45  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
46  conditions.testing_payloads = [
47  'localdb/database.txt'
48  ]
49 
50  variables = ['M', 'p', 'pt', 'pz',
51  'daughter(0, p)', 'daughter(0, pz)', 'daughter(0, pt)',
52  'daughter(1, p)', 'daughter(1, pz)', 'daughter(1, pt)',
53  'daughter(2, p)', 'daughter(2, pz)', 'daughter(2, pt)',
54  'chiProb', 'dr', 'dz',
55  'daughter(0, dr)', 'daughter(1, dr)',
56  'daughter(0, dz)', 'daughter(1, dz)',
57  'daughter(0, chiProb)', 'daughter(1, chiProb)', 'daughter(2, chiProb)',
58  'daughter(0, kaonID)', 'daughter(0, pionID)',
59  'daughterInvariantMass(0, 1)', 'daughterInvariantMass(0, 2)', 'daughterInvariantMass(1, 2)']
60 
61  # Train a MVA method and directly upload it to the database
62  general_options = basf2_mva.GeneralOptions()
63  general_options.m_datafiles = basf2_mva.vector("train.root")
64  general_options.m_treename = "tree"
65  general_options.m_identifier = "SKLearn-NN"
66  general_options.m_variables = basf2_mva.vector(*variables)
67  general_options.m_target_variable = "isSignal"
68 
69  sklearn_nn_options = basf2_mva.PythonOptions()
70  sklearn_nn_options.m_framework = "sklearn"
71  sklearn_nn_options.m_steering_file = 'mva/examples/python/sklearn_mlpclassifier.py'
72  param = '{"hidden_layer_sizes": [29], "activation": "logistic", "max_iter": 100, "solver": "adam", "batch_size": 100}'
73  sklearn_nn_options.m_config = param
74  sklearn_nn_options.m_normalize = True
75 
76  test_data = ["test.root"] * 10
77  training_start = time.time()
78  basf2_mva.teacher(general_options, sklearn_nn_options)
79  training_stop = time.time()
80  training_time = training_stop - training_start
81  method = basf2_mva_util.Method(general_options.m_identifier)
82  inference_start = time.time()
83  p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
84  inference_stop = time.time()
85  inference_time = inference_stop - inference_start
87  print("SKLearn", training_time, inference_time, auc)
def calculate_roc_auc(p, t)