5 import modularAnalysis
as ma
7 import flavorTagger
as ft
8 from variables
import variables
as vm
14 filenumber = sys.argv[1]
17 b2.conditions.prepend_globaltag(
"analysis_tools_release-04-02")
24 environmentType=
"default",
25 filelist=[b2.find_file(f
"starterkit/2021/1111540100_eph3_BGx0_{filenumber}.root",
"examples")],
32 "electronID > 0.1 and dr < 0.5 and abs(dz) < 2 and thetaInCDCAcceptance",
39 "goodFWDGamma",
"passesCut(clusterReg == 1 and clusterE > 0.075)"
42 "goodBRLGamma",
"passesCut(clusterReg == 2 and clusterE > 0.05)"
45 "goodBWDGamma",
"passesCut(clusterReg == 3 and clusterE > 0.1)"
48 "goodGamma",
"passesCut(goodFWDGamma or goodBRLGamma or goodBWDGamma)"
50 ma.fillParticleList(
"gamma:brems",
"goodGamma", path=main)
51 ma.correctBrems(
"e+:corrected",
"e+:uncorrected",
"gamma:brems", path=main)
52 vm.addAlias(
"isBremsCorrected",
"extraInfo(bremsCorrected)")
56 "J/psi:ee -> e+:corrected e-:corrected ?addbrems",
66 "B0 -> J/psi:ee K_S0:merged",
67 cut=
"Mbc > 5.2 and abs(deltaE) < 0.15",
72 ma.matchMCTruth(
"B0", path=main)
75 ma.buildRestOfEvent(
"B0", fillWithMostLikely=
True, path=main)
76 track_based_cuts =
"thetaInCDCAcceptance and pt > 0.075 and dr < 5 and abs(dz) < 10"
77 ecl_based_cuts =
"thetaInCDCAcceptance and E > 0.05"
78 roe_mask = (
"my_mask", track_based_cuts, ecl_based_cuts)
79 ma.appendROEMasks(
"B0", [roe_mask], path=main)
82 ft.flavorTagger([
"B0"], path=main)
88 b2.set_random_seed(
"Belle II StarterKit")
89 ma.rankByHighest(
"B0", variable=
"random", numBest=1, path=main)
94 standard_vars = vc.kinematics + vc.mc_kinematics + vc.mc_truth
95 b_vars += vc.deltae_mbc
96 b_vars += standard_vars
99 roe_kinematics = [
"roeE()",
"roeM()",
"roeP()",
"roeMbc()",
"roeDeltae()"]
100 roe_multiplicities = [
103 "nROE_NeutralHadrons()",
105 b_vars += roe_kinematics + roe_multiplicities
107 for roe_variable
in roe_kinematics + roe_multiplicities:
109 roe_variable_with_mask = roe_variable.replace(
"()",
"(my_mask)")
110 b_vars.append(roe_variable_with_mask)
112 b_vars += ft.flavor_tagging
113 b_vars += vc.tag_vertex + vc.mc_tag_vertex
116 fs_vars = vc.pid + vc.track + vc.track_hits + standard_vars
117 b_vars += vu.create_aliases_for_selected(
118 fs_vars + [
"isBremsCorrected"],
119 "B0 -> [J/psi -> ^e+ ^e-] K_S0",
122 b_vars += vu.create_aliases_for_selected(
123 fs_vars,
"B0 -> J/psi [K_S0 -> ^pi+ ^pi-]", prefix=[
"pip",
"pim"]
126 jpsi_ks_vars = vc.inv_mass + standard_vars
127 jpsi_ks_vars += vc.vertex + vc.mc_vertex
128 b_vars += vu.create_aliases_for_selected(jpsi_ks_vars,
"B0 -> ^J/psi ^K_S0")
131 "Jpsi_M_uncorrected",
"daughter(0, daughterCombination(M,0:0,1:0))"
133 b_vars += [
"Jpsi_M_uncorrected"]
136 cmskinematics = vu.create_aliases(
137 vc.kinematics,
"useCMSFrame({variable})",
"CMS"
139 b_vars += vu.create_aliases_for_selected(
140 cmskinematics,
"^B0 -> [^J/psi -> ^e+ ^e-] [^K_S0 -> ^pi+ ^pi-]"
144 "withBremsCorrection",
145 "passesCut(passesCut(ep_isBremsCorrected == 1) or passesCut(em_isBremsCorrected == 1))",
147 b_vars += [
"withBremsCorrection"]
150 ma.variablesToNtuple(
153 filename=
"Bd2JpsiKS.root",
def stdKshorts(prioritiseV0=True, fitter='TreeFit', path=None)
def TagV(list_name, MCassociation='', confidenceLevel=0., trackFindingType="standard_PXD", constraintType="IP", askMCInfo=False, reqPXDHits=0, maskName='', fitAlgorithm='Rave', useTruthInFit=False, useRollBack=False, path=None)
def kFit(list_name, conf_level, fit_type='vertex', constraint='', daughtersUpdate=False, decay_string='', massConstraint=[], smearing=0, path=None)