12 Airflow script to perform BoostVector calibration.
15 from prompt
import CalibrationSettings, INPUT_DATA_FILTERS
16 from prompt.calibrations.caf_beamspot
import settings
as beamspot
19 settings = CalibrationSettings(
20 name=
"BoostVector Calibrations",
21 expert_username=
"zlebcr",
23 input_data_formats=[
"cdst"],
24 input_data_names=[
"mumu_tight_or_highm_calib"],
26 "mumu_tight_or_highm_calib": [
27 INPUT_DATA_FILTERS[
"Data Tag"][
"mumu_tight_or_highm_calib"],
28 INPUT_DATA_FILTERS[
"Run Type"][
"physics"],
29 INPUT_DATA_FILTERS[
"Data Quality Tag"][
"Good Or Recoverable"],
30 INPUT_DATA_FILTERS[
"Magnet"][
"On"]]},
32 "outerLoss":
"pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
33 "innerLoss":
"pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)"},
34 depends_on=[beamspot])
39 def get_calibrations(input_data, **kwargs):
42 input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
43 Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
44 assigning to calibration.files_to_iov
46 **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
47 backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
48 release explicitly if you want to.
50 Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
51 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
54 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
61 file_to_iov_physics = input_data[
"mumu_tight_or_highm_calib"]
66 max_files_per_run = 1000000
72 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics, max_files_per_run)
73 input_files_physics = list(reduced_file_to_iov_physics.keys())
74 basf2.B2INFO(f
"Total number of files actually used as input = {len(input_files_physics)}")
78 requested_iov = kwargs.get(
"requested_iov",
None)
80 from caf.utils
import IoV
82 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
87 from ROOT.Belle2
import BoostVectorAlgorithm
88 from basf2
import create_path, register_module
89 import modularAnalysis
as ana
95 from caf.framework
import Calibration
96 from caf.strategies
import SingleIOV
97 from reconstruction
import prepare_cdst_analysis
100 rec_path_1 = create_path()
101 prepare_cdst_analysis(path=rec_path_1, components=[
'CDC',
'ECL',
'KLM'])
103 muSelection =
'[p>1.0]'
104 muSelection +=
' and abs(dz)<2.0 and abs(dr)<0.5'
105 muSelection +=
' and nPXDHits >=1 and nSVDHits >= 8 and nCDCHits >= 20'
106 ana.fillParticleList(
'mu+:BV', muSelection, path=rec_path_1)
107 ana.reconstructDecay(
'Upsilon(4S):BV -> mu+:BV mu-:BV',
'9.5<M<11.5', path=rec_path_1)
108 vertex.treeFit(
'Upsilon(4S):BV', updateAllDaughters=
True, ipConstraint=
True, path=rec_path_1)
110 collector_bv = register_module(
'BoostVectorCollector', Y4SPListName=
'Upsilon(4S):BV')
111 algorithm_bv = BoostVectorAlgorithm()
112 algorithm_bv.setOuterLoss(kwargs[
'expert_config'][
'outerLoss'])
113 algorithm_bv.setInnerLoss(kwargs[
'expert_config'][
'innerLoss'])
116 collector=collector_bv,
117 algorithms=algorithm_bv,
118 input_files=input_files_physics,
119 pre_collector_path=rec_path_1)
121 calibration_bv.strategies = SingleIOV
125 for algorithm
in calibration_bv.algorithms:
126 algorithm.params = {
"iov_coverage": output_iov}
132 return [calibration_bv]
def treeFit(list_name, conf_level=0.001, massConstraint=[], ipConstraint=False, updateAllDaughters=False, customOriginConstraint=False, customOriginVertex=[0.001, 0, 0.0116], customOriginCovariance=[0.0048, 0, 0, 0, 0.003567, 0, 0, 0, 0.0400], path=None)