20 from keras.layers
import Input, Dense, Dropout
21 from keras.layers.normalization
import BatchNormalization
22 from keras.models
import Model
23 from keras.optimizers
import Adam
24 from keras.losses
import binary_crossentropy
25 from keras.activations
import sigmoid, tanh
26 from keras.callbacks
import Callback
29 old_time = time.time()
32 def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
34 Build feed forward keras model
36 input = Input(shape=(number_of_features,))
38 net = Dense(units=number_of_features, activation=tanh)(input)
40 net = Dense(units=number_of_features, activation=tanh)(net)
41 net = BatchNormalization()(net)
43 net = Dense(units=number_of_features, activation=tanh)(net)
44 net = Dropout(rate=0.4)(net)
46 output = Dense(units=1, activation=sigmoid)(net)
48 state = State(Model(input, output))
50 state.model.compile(optimizer=Adam(lr=0.01), loss=binary_crossentropy, metrics=[
'accuracy'])
57 def begin_fit(state, Xtest, Stest, ytest, wtest):
59 Returns just the state object
67 def partial_fit(state, X, S, y, w, epoch):
69 Pass received data to tensorflow session
71 class TestCallback(Callback):
73 def on_epoch_end(self, epoch, logs=None):
74 loss, acc = state.model.evaluate(state.Xtest, state.ytest, verbose=0, batch_size=1000)
75 loss2, acc2 = state.model.evaluate(X[:10000], y[:10000], verbose=0, batch_size=1000)
76 print(
'\nTesting loss: {}, acc: {}'.format(loss, acc))
77 print(
'Training loss: {}, acc: {}'.format(loss2, acc2))
79 state.model.fit(X, y, batch_size=500, epochs=10, callbacks=[TestCallback()])
83 if __name__ ==
"__main__":
84 from basf2
import conditions
86 conditions.testing_payloads = [
87 'localdb/database.txt'
90 general_options = basf2_mva.GeneralOptions()
91 general_options.m_datafiles = basf2_mva.vector(
"train.root")
92 general_options.m_identifier =
"deep_keras"
93 general_options.m_treename =
"tree"
94 variables = [
'M',
'p',
'pt',
'pz',
95 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
96 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
97 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
98 'chiProb',
'dr',
'dz',
99 'daughter(0, dr)',
'daughter(1, dr)',
100 'daughter(0, dz)',
'daughter(1, dz)',
101 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
102 'daughter(0, kaonID)',
'daughter(0, pionID)',
103 'daughterInvariantMass(0, 1)',
'daughterInvariantMass(0, 2)',
'daughterInvariantMass(1, 2)']
104 general_options.m_variables = basf2_mva.vector(*variables)
105 general_options.m_target_variable =
"isSignal"
107 specific_options = basf2_mva.PythonOptions()
108 specific_options.m_framework =
"contrib_keras"
109 specific_options.m_steering_file =
'mva/examples/keras/simple_deep.py'
110 specific_options.m_normalize =
True
111 specific_options.m_training_fraction = 0.9
113 training_start = time.time()
114 basf2_mva.teacher(general_options, specific_options)
115 training_stop = time.time()
116 training_time = training_stop - training_start
118 inference_start = time.time()
119 test_data = [
"test.root"] * 10
120 p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
121 inference_stop = time.time()
122 inference_time = inference_stop - inference_start
124 print(
"Tensorflow", training_time, inference_time, auc)
def calculate_roc_auc(p, t)