Belle II Software  release-06-02-00
lorentz.py
1 # This file was automatically created by FeynRules 2.0.25
2 # Mathematica version: 9.0 for Mac OS X x86 (64-bit) (January 24, 2013)
3 # Date: Mon 31 Oct 2016 15:36:05
4 
5 
6 from object_library import all_lorentz, Lorentz
7 
8 from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot
9 
10 
11 UUS1 = Lorentz(name = 'UUS1',
12  spins = [ -1, -1, 1 ],
13  structure = '1')
14 
15 UUV1 = Lorentz(name = 'UUV1',
16  spins = [ -1, -1, 3 ],
17  structure = 'P(3,2) + P(3,3)')
18 
19 SSS1 = Lorentz(name = 'SSS1',
20  spins = [ 1, 1, 1 ],
21  structure = '1')
22 
23 FFS1 = Lorentz(name = 'FFS1',
24  spins = [ 2, 2, 1 ],
25  structure = 'ProjM(2,1)')
26 
27 FFS2 = Lorentz(name = 'FFS2',
28  spins = [ 2, 2, 1 ],
29  structure = 'ProjM(2,1) - ProjP(2,1)')
30 
31 FFS3 = Lorentz(name = 'FFS3',
32  spins = [ 2, 2, 1 ],
33  structure = 'ProjP(2,1)')
34 
35 FFS4 = Lorentz(name = 'FFS4',
36  spins = [ 2, 2, 1 ],
37  structure = 'ProjM(2,1) + ProjP(2,1)')
38 
39 FFV1 = Lorentz(name = 'FFV1',
40  spins = [ 2, 2, 3 ],
41  structure = 'Gamma(3,2,1)')
42 
43 FFV2 = Lorentz(name = 'FFV2',
44  spins = [ 2, 2, 3 ],
45  structure = 'Gamma(3,2,-1)*ProjM(-1,1)')
46 
47 FFV3 = Lorentz(name = 'FFV3',
48  spins = [ 2, 2, 3 ],
49  structure = 'Gamma(3,2,-1)*ProjM(-1,1) - 2*Gamma(3,2,-1)*ProjP(-1,1)')
50 
51 FFV4 = Lorentz(name = 'FFV4',
52  spins = [ 2, 2, 3 ],
53  structure = 'Gamma(3,2,-1)*ProjM(-1,1) + 2*Gamma(3,2,-1)*ProjP(-1,1)')
54 
55 FFV5 = Lorentz(name = 'FFV5',
56  spins = [ 2, 2, 3 ],
57  structure = 'Gamma(3,2,-1)*ProjM(-1,1) + 4*Gamma(3,2,-1)*ProjP(-1,1)')
58 
59 VSS1 = Lorentz(name = 'VSS1',
60  spins = [ 3, 1, 1 ],
61  structure = 'P(1,2) - P(1,3)')
62 
63 VVS1 = Lorentz(name = 'VVS1',
64  spins = [ 3, 3, 1 ],
65  structure = 'Epsilon(1,2,-1,-2)*P(-2,2)*P(-1,1)')
66 
67 VVS2 = Lorentz(name = 'VVS2',
68  spins = [ 3, 3, 1 ],
69  structure = '-(Epsilon(1,2,-1,-2)*P(-2,2)*P(-1,1)) + Epsilon(1,2,-1,-2)*P(-2,1)*P(-1,2)')
70 
71 VVS3 = Lorentz(name = 'VVS3',
72  spins = [ 3, 3, 1 ],
73  structure = 'Metric(1,2)')
74 
75 VVV1 = Lorentz(name = 'VVV1',
76  spins = [ 3, 3, 3 ],
77  structure = 'P(3,1)*Metric(1,2) - P(3,2)*Metric(1,2) - P(2,1)*Metric(1,3) + P(2,3)*Metric(1,3) + P(1,2)*Metric(2,3) - P(1,3)*Metric(2,3)')
78 
79 SSSS1 = Lorentz(name = 'SSSS1',
80  spins = [ 1, 1, 1, 1 ],
81  structure = '1')
82 
83 VVSS1 = Lorentz(name = 'VVSS1',
84  spins = [ 3, 3, 1, 1 ],
85  structure = 'Metric(1,2)')
86 
87 VVVV1 = Lorentz(name = 'VVVV1',
88  spins = [ 3, 3, 3, 3 ],
89  structure = 'Metric(1,4)*Metric(2,3) - Metric(1,3)*Metric(2,4)')
90 
91 VVVV2 = Lorentz(name = 'VVVV2',
92  spins = [ 3, 3, 3, 3 ],
93  structure = 'Metric(1,4)*Metric(2,3) + Metric(1,3)*Metric(2,4) - 2*Metric(1,2)*Metric(3,4)')
94 
95 VVVV3 = Lorentz(name = 'VVVV3',
96  spins = [ 3, 3, 3, 3 ],
97  structure = 'Metric(1,4)*Metric(2,3) - Metric(1,2)*Metric(3,4)')
98 
99 VVVV4 = Lorentz(name = 'VVVV4',
100  spins = [ 3, 3, 3, 3 ],
101  structure = 'Metric(1,3)*Metric(2,4) - Metric(1,2)*Metric(3,4)')
102 
103 VVVV5 = Lorentz(name = 'VVVV5',
104  spins = [ 3, 3, 3, 3 ],
105  structure = 'Metric(1,4)*Metric(2,3) - (Metric(1,3)*Metric(2,4))/2. - (Metric(1,2)*Metric(3,4))/2.')
106