Belle II Software  release-06-02-00
lorentz.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 
4 # This file was automatically created by FeynRules 2.0.26
5 # Mathematica version: 9.0 for Linux x86 (64-bit) (November 20, 2012)
6 # Date: Wed 23 Jul 2014 02:04:18
7 
8 from object_library import all_lorentz, Lorentz
9 
10 from function_library import complexconjugate, re, im, csc, sec, acsc, asec, \
11  cot
12 
13 UUV1 = Lorentz(name='UUV1', spins=[-1, -1, 3], structure='P(3,2) + P(3,3)')
14 
15 SSS1 = Lorentz(name='SSS1', spins=[1, 1, 1], structure='1')
16 
17 FFS1 = Lorentz(name='FFS1', spins=[2, 2, 1], structure='Identity(2,1)')
18 
19 FFV1 = Lorentz(name='FFV1', spins=[2, 2, 3], structure='Gamma(3,2,1)')
20 
21 FFV2 = Lorentz(name='FFV2', spins=[2, 2, 3],
22  structure='Gamma(3,2,-1)*ProjM(-1,1)')
23 
24 FFV3 = Lorentz(name='FFV3', spins=[2, 2, 3],
25  structure='Gamma(3,2,-1)*ProjM(-1,1) - 2*Gamma(3,2,-1)*ProjP(-1,1)'
26  )
27 
28 FFV4 = Lorentz(name='FFV4', spins=[2, 2, 3],
29  structure='Gamma(3,2,-1)*ProjM(-1,1) + 2*Gamma(3,2,-1)*ProjP(-1,1)'
30  )
31 
32 FFV5 = Lorentz(name='FFV5', spins=[2, 2, 3],
33  structure='Gamma(3,2,-1)*ProjM(-1,1) + 4*Gamma(3,2,-1)*ProjP(-1,1)'
34  )
35 
36 VSS1 = Lorentz(name='VSS1', spins=[3, 1, 1], structure='P(1,2) - P(1,3)')
37 
38 VVS1 = Lorentz(name='VVS1', spins=[3, 3, 1], structure='Metric(1,2)')
39 
40 VVV1 = Lorentz(
41  name='VVV1',
42  spins=[
43  3,
44  3,
45  3],
46  structure='P(3,1)*Metric(1,2) - P(3,2)*Metric(1,2) - P(2,1)*Metric(1,3) + P(2,3)*Metric(1,3) \
47 + P(1,2)*Metric(2,3) - P(1,3)*Metric(2,3)')
48 
49 SSSS1 = Lorentz(name='SSSS1', spins=[1, 1, 1, 1], structure='1')
50 
51 VVSS1 = Lorentz(name='VVSS1', spins=[3, 3, 1, 1], structure='Metric(1,2)')
52 
53 VVVV1 = Lorentz(name='VVVV1', spins=[3, 3, 3, 3],
54  structure='Metric(1,4)*Metric(2,3) - Metric(1,3)*Metric(2,4)')
55 
56 VVVV2 = Lorentz(name='VVVV2', spins=[3, 3, 3, 3],
57  structure='Metric(1,4)*Metric(2,3) + Metric(1,3)*Metric(2,4) - 2*Metric(1,2)*Metric(3,4)'
58  )
59 
60 VVVV3 = Lorentz(name='VVVV3', spins=[3, 3, 3, 3],
61  structure='Metric(1,4)*Metric(2,3) - Metric(1,2)*Metric(3,4)')
62 
63 VVVV4 = Lorentz(name='VVVV4', spins=[3, 3, 3, 3],
64  structure='Metric(1,3)*Metric(2,4) - Metric(1,2)*Metric(3,4)')
65 
66 VVVV5 = Lorentz(name='VVVV5', spins=[3, 3, 3, 3],
67  structure='Metric(1,4)*Metric(2,3) - (Metric(1,3)*Metric(2,4))/2. - (Metric(1,2)*Metric(3,4))/2.'
68  )