15 if __name__ ==
"__main__":
16 from basf2
import conditions
18 conditions.testing_payloads = [
19 'localdb/database.txt'
43 'daughter(0, chiProb)',
44 'daughter(1, chiProb)',
45 'daughter(2, chiProb)',
46 'daughter(0, kaonID)',
47 'daughter(0, pionID)',
48 'daughterInvariantMass(0, 1)',
49 'daughterInvariantMass(0, 2)',
50 'daughterInvariantMass(1, 2)']
53 general_options = basf2_mva.GeneralOptions()
54 general_options.m_datafiles = basf2_mva.vector(
"train.root")
55 general_options.m_treename =
"tree"
56 general_options.m_identifier =
"MVADatabaseIdentifier"
57 general_options.m_variables = basf2_mva.vector(*variables)
58 general_options.m_target_variable =
"isSignal"
60 fastbdt_options = basf2_mva.FastBDTOptions()
61 fastbdt_options.m_nTrees = 100
62 fastbdt_options.m_nCuts = 10
63 fastbdt_options.m_nLevels = 3
64 fastbdt_options.m_shrinkage = 0.2
65 fastbdt_options.m_randRatio = 0.5
67 fastbdt_pt_options = basf2_mva.FastBDTOptions()
68 fastbdt_pt_options.m_nTrees = 100
69 fastbdt_pt_options.m_nCuts = 10
70 fastbdt_pt_options.m_nLevels = 3
71 fastbdt_pt_options.m_shrinkage = 0.2
72 fastbdt_pt_options.m_randRatio = 0.5
73 fastbdt_pt_options.m_purityTransformation =
True
76 test_data = [
"validation.root"]
77 for label, options
in [(
"FastBDT", fastbdt_options), (
"FastBDT_PT", fastbdt_pt_options)]:
78 training_start = time.time()
79 general_options.m_identifier = label
80 basf2_mva.teacher(general_options, options)
81 training_stop = time.time()
82 training_time = training_stop - training_start
84 inference_start = time.time()
85 p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
86 inference_stop = time.time()
87 inference_time = inference_stop - inference_start
89 print(label, training_time, inference_time, auc)
90 stats.append((label, training_time, inference_time, auc))
def calculate_roc_auc(p, t)