Belle II Software  release-06-02-00
purity_transformation.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import time
14 
15 if __name__ == "__main__":
16  from basf2 import conditions
17  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
18  conditions.testing_payloads = [
19  'localdb/database.txt'
20  ]
21 
22  variables = [
23  'M',
24  'p',
25  'pt',
26  'pz',
27  'daughter(0, p)',
28  'daughter(0, pz)',
29  'daughter(0, pt)',
30  'daughter(1, p)',
31  'daughter(1, pz)',
32  'daughter(1, pt)',
33  'daughter(2, p)',
34  'daughter(2, pz)',
35  'daughter(2, pt)',
36  'chiProb',
37  'dr',
38  'dz',
39  'daughter(0, dr)',
40  'daughter(1, dr)',
41  'daughter(0, dz)',
42  'daughter(1, dz)',
43  'daughter(0, chiProb)',
44  'daughter(1, chiProb)',
45  'daughter(2, chiProb)',
46  'daughter(0, kaonID)',
47  'daughter(0, pionID)',
48  'daughterInvariantMass(0, 1)',
49  'daughterInvariantMass(0, 2)',
50  'daughterInvariantMass(1, 2)']
51 
52  # Train a MVA method and directly upload it to the database
53  general_options = basf2_mva.GeneralOptions()
54  general_options.m_datafiles = basf2_mva.vector("train.root")
55  general_options.m_treename = "tree"
56  general_options.m_identifier = "MVADatabaseIdentifier"
57  general_options.m_variables = basf2_mva.vector(*variables)
58  general_options.m_target_variable = "isSignal"
59 
60  fastbdt_options = basf2_mva.FastBDTOptions()
61  fastbdt_options.m_nTrees = 100
62  fastbdt_options.m_nCuts = 10
63  fastbdt_options.m_nLevels = 3
64  fastbdt_options.m_shrinkage = 0.2
65  fastbdt_options.m_randRatio = 0.5
66 
67  fastbdt_pt_options = basf2_mva.FastBDTOptions()
68  fastbdt_pt_options.m_nTrees = 100
69  fastbdt_pt_options.m_nCuts = 10
70  fastbdt_pt_options.m_nLevels = 3
71  fastbdt_pt_options.m_shrinkage = 0.2
72  fastbdt_pt_options.m_randRatio = 0.5
73  fastbdt_pt_options.m_purityTransformation = True
74 
75  stats = []
76  test_data = ["validation.root"]
77  for label, options in [("FastBDT", fastbdt_options), ("FastBDT_PT", fastbdt_pt_options)]:
78  training_start = time.time()
79  general_options.m_identifier = label
80  basf2_mva.teacher(general_options, options)
81  training_stop = time.time()
82  training_time = training_stop - training_start
83  method = basf2_mva_util.Method(general_options.m_identifier)
84  inference_start = time.time()
85  p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
86  inference_stop = time.time()
87  inference_time = inference_stop - inference_start
89  print(label, training_time, inference_time, auc)
90  stats.append((label, training_time, inference_time, auc))
91 
92  for line in stats:
93  print(*line)
def calculate_roc_auc(p, t)