Belle II Software  release-06-02-00
sklearn_default.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import time
14 
15 
16 if __name__ == "__main__":
17  from basf2 import conditions
18  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
19  conditions.testing_payloads = [
20  'localdb/database.txt'
21  ]
22 
23  variables = ['M', 'p', 'pt', 'pz',
24  'daughter(0, p)', 'daughter(0, pz)', 'daughter(0, pt)',
25  'daughter(1, p)', 'daughter(1, pz)', 'daughter(1, pt)',
26  'daughter(2, p)', 'daughter(2, pz)', 'daughter(2, pt)',
27  'chiProb', 'dr', 'dz',
28  'daughter(0, dr)', 'daughter(1, dr)',
29  'daughter(0, dz)', 'daughter(1, dz)',
30  'daughter(0, chiProb)', 'daughter(1, chiProb)', 'daughter(2, chiProb)',
31  'daughter(0, kaonID)', 'daughter(0, pionID)',
32  'daughterInvariantMass(0, 1)', 'daughterInvariantMass(0, 2)', 'daughterInvariantMass(1, 2)']
33 
34  # Train a MVA method and directly upload it to the database
35  general_options = basf2_mva.GeneralOptions()
36  general_options.m_datafiles = basf2_mva.vector("train.root")
37  general_options.m_treename = "tree"
38  general_options.m_identifier = "SKLearn-BDT"
39  general_options.m_variables = basf2_mva.vector(*variables)
40  general_options.m_target_variable = "isSignal"
41 
42  sklearn_nn_options = basf2_mva.PythonOptions()
43  sklearn_nn_options.m_framework = "sklearn"
44  sklearn_nn_options.m_steering_file = 'mva/examples/python/sklearn_default.py'
45 
46  test_data = ["test.root"] * 10
47  training_start = time.time()
48  basf2_mva.teacher(general_options, sklearn_nn_options)
49  training_stop = time.time()
50  training_time = training_stop - training_start
51  method = basf2_mva_util.Method(general_options.m_identifier)
52  inference_start = time.time()
53  p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
54  inference_stop = time.time()
55  inference_time = inference_stop - inference_start
57  print("SKLearn", training_time, inference_time, auc)
def calculate_roc_auc(p, t)