16 if __name__ ==
"__main__":
17 from basf2
import conditions
19 conditions.testing_payloads = [
20 'localdb/database.txt'
23 variables = [
'M',
'p',
'pt',
'pz',
24 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
25 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
26 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
27 'chiProb',
'dr',
'dz',
28 'daughter(0, dr)',
'daughter(1, dr)',
29 'daughter(0, dz)',
'daughter(1, dz)',
30 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
31 'daughter(0, kaonID)',
'daughter(0, pionID)',
32 'daughterInvariantMass(0, 1)',
'daughterInvariantMass(0, 2)',
'daughterInvariantMass(1, 2)']
35 general_options = basf2_mva.GeneralOptions()
36 general_options.m_datafiles = basf2_mva.vector(
"train.root")
37 general_options.m_treename =
"tree"
38 general_options.m_identifier =
"SKLearn-BDT"
39 general_options.m_variables = basf2_mva.vector(*variables)
40 general_options.m_target_variable =
"isSignal"
42 sklearn_nn_options = basf2_mva.PythonOptions()
43 sklearn_nn_options.m_framework =
"sklearn"
44 sklearn_nn_options.m_steering_file =
'mva/examples/python/sklearn_default.py'
46 test_data = [
"test.root"] * 10
47 training_start = time.time()
48 basf2_mva.teacher(general_options, sklearn_nn_options)
49 training_stop = time.time()
50 training_time = training_stop - training_start
52 inference_start = time.time()
53 p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
54 inference_stop = time.time()
55 inference_time = inference_stop - inference_start
57 print(
"SKLearn", training_time, inference_time, auc)
def calculate_roc_auc(p, t)