15 if __name__ ==
"__main__":
16 from basf2
import conditions
18 conditions.testing_payloads = [
19 'localdb/database.txt'
22 variables = [
'M',
'p',
'pt',
'pz',
23 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
24 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
25 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
26 'chiProb',
'dr',
'dz',
27 'daughter(0, dr)',
'daughter(1, dr)',
28 'daughter(0, dz)',
'daughter(1, dz)',
29 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
30 'daughter(0, kaonID)',
'daughter(0, pionID)',
31 'daughterInvariantMass(0, 1)',
'daughterInvariantMass(0, 2)',
'daughterInvariantMass(1, 2)']
34 general_options = basf2_mva.GeneralOptions()
35 general_options.m_datafiles = basf2_mva.vector(
"train.root")
36 general_options.m_treename =
"tree"
37 general_options.m_identifier =
"TMVA"
38 general_options.m_variables = basf2_mva.vector(*variables)
39 general_options.m_target_variable =
"isSignal"
41 tmva_bdt_options = basf2_mva.TMVAOptionsClassification()
42 tmva_bdt_options.m_config = (
"!H:!V:CreateMVAPdfs:NTrees=100:BoostType=Grad:Shrinkage=0.2:UseBaggedBoost:"
43 "BaggedSampleFraction=0.5:nCuts=1024:MaxDepth=3:IgnoreNegWeightsInTraining")
45 training_start = time.time()
46 basf2_mva.teacher(general_options, tmva_bdt_options)
47 training_stop = time.time()
49 training_time = training_stop - training_start
52 inference_start = time.time()
53 test_data = [
"test.root"] * 10
54 p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
55 inference_stop = time.time()
56 inference_time = inference_stop - inference_start
59 print(
"TMVA", training_time, inference_time, auc)
def calculate_roc_auc(p, t)