Belle II Software  release-06-02-00
tmva_nn.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import time
14 
15 if __name__ == "__main__":
16  from basf2 import conditions
17  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
18  conditions.testing_payloads = [
19  'localdb/database.txt'
20  ]
21 
22  variables = ['M', 'p', 'pt', 'pz',
23  'daughter(0, p)', 'daughter(0, pz)', 'daughter(0, pt)',
24  'daughter(1, p)', 'daughter(1, pz)', 'daughter(1, pt)',
25  'daughter(2, p)', 'daughter(2, pz)', 'daughter(2, pt)',
26  'chiProb', 'dr', 'dz',
27  'daughter(0, dr)', 'daughter(1, dr)',
28  'daughter(0, dz)', 'daughter(1, dz)',
29  'daughter(0, chiProb)', 'daughter(1, chiProb)', 'daughter(2, chiProb)',
30  'daughter(0, kaonID)', 'daughter(0, pionID)',
31  'daughterInvariantMass(0, 1)', 'daughterInvariantMass(0, 2)', 'daughterInvariantMass(1, 2)']
32 
33  # Train a MVA method and directly upload it to the database
34  general_options = basf2_mva.GeneralOptions()
35  general_options.m_datafiles = basf2_mva.vector("train.root")
36  general_options.m_treename = "tree"
37  general_options.m_identifier = "TMVA"
38  general_options.m_variables = basf2_mva.vector(*variables)
39  general_options.m_target_variable = "isSignal"
40 
41  tmva_nn_options = basf2_mva.TMVAOptionsClassification()
42  tmva_nn_options.m_type = "MLP"
43  tmva_nn_options.m_method = "MLP"
44  tmva_nn_options.m_config = ("H:!V:CreateMVAPdfs:VarTransform=N:NCycles=10:HiddenLayers=N+1:TrainingMethod=BFGS")
45 
46  training_start = time.time()
47  basf2_mva.teacher(general_options, tmva_nn_options)
48  training_stop = time.time()
49 
50  training_time = training_stop - training_start
51  method = basf2_mva_util.Method(general_options.m_identifier)
52 
53  inference_start = time.time()
54  test_data = ["test.root"] * 10
55  p, t = method.apply_expert(basf2_mva.vector(*test_data), general_options.m_treename)
56  inference_stop = time.time()
57  inference_time = inference_stop - inference_start
58 
60  print("TMVA", training_time, inference_time, auc)
def calculate_roc_auc(p, t)