13 <input>PartGunChargedStableGenSim.root</input>
14 <output>ChargedPID_Validation.root,Detector_ChargedPID_Validation.root</output>
15 <contact>Sviatoslav Bilokin (sviatoslav.bilokin@desy.de)</contact>
17 Check the PID efficiency and fake rates
24 from modularAnalysis
import cutAndCopyList, inputMdst, fillParticleList, variablesToHistogram
25 from reconstruction
import add_reconstruction
26 from variables
import variables
28 INPUT_FILENAME =
"../PartGunChargedStableGenSim.root"
29 GLOBALID_OUTPUT_FILENAME =
"Global_ChargedPID_Validation.root"
30 DET_PID_OUTPUT_FILENAME =
"Detector_ChargedPID_Validation.root"
32 GLOBAL_ID_NAMES = [
'electronID',
'muonID',
'pionID',
'kaonID',
'protonID']
33 PARTICLE_TYPES = [
'e',
'mu',
'pi',
'K',
'p']
34 PARTICLE_PDGS = [11, 13, 211, 321, 2212]
35 DETECTORS = [
'SVD',
'CDC',
'TOP',
'ARICH',
'ECL',
'KLM']
36 DETECTOR_EXPERTS = [
"luigi.corona@pi.infn.it",
37 "alexander.glazov@desy.de",
38 "marko.staric@ijs.si",
39 "luka.santelj@ijs.si",
40 "torben.ferber@kit.edu",
43 DETECTOR_ACCEPTANCE_CUTS = [
52 PID_EXPERT =
"kenta.uno@kek.jp and alessandro.gaz@pd.infn.it"
54 THRESHOLDS = [0.2, 0.8]
55 KIN_VAR_NAMES = [
'p',
'cosTheta']
56 KIN_VAR_BINS = [(20, 0., 5), (10, -1, 1)]
57 DEFAULT_OPTIONS =
"pvalue-warn=0.5"
60 def get_expert(pid: str, for_detector: bool =
False):
62 Returns the email of expert for detector or PID.
64 for det, exp
in zip(DETECTORS, DETECTOR_EXPERTS):
67 return "sviatoslav.bilokin@desy.de"
72 Returns aliases for the detector probability variables
75 for pdg, name
in zip(PARTICLE_PDGS, PARTICLE_TYPES):
77 new_name = f
'pidProbabilityExpert_{name}_{det}'
78 variables.addAlias(new_name, f
'pidProbabilityExpert({pdg},{det})')
83 DETECTOR_PIDS = add_aliases()
88 Function to produce the validation ntuples via basf2.
91 inputMdst(INPUT_FILENAME, path=main)
92 add_reconstruction(path=main)
93 track_quality_cuts =
'isSignal > 0'
95 for pid, particle
in zip(GLOBAL_ID_NAMES, PARTICLE_TYPES):
97 fillParticleList(f
'{particle}+:total', track_quality_cuts, path=main)
99 for det, cut
in zip(DETECTORS, DETECTOR_ACCEPTANCE_CUTS):
100 fillParticleList(f
'{particle}+:total_{det}', f
'{track_quality_cuts} and {cut}', path=main)
103 for cut_val
in THRESHOLDS:
104 cutAndCopyList(f
'{particle}+:cut0{int(cut_val*10)}', f
'{particle}+:total',
105 f
'{pid} > {cut_val}', path=main)
106 for var, bin_tuple
in zip(KIN_VAR_NAMES, KIN_VAR_BINS):
109 filename=GLOBALID_OUTPUT_FILENAME,
111 directory=f
'cut0{int(cut_val*10)}_{particle}_{pid}_{var}')
113 for fake_pid
in GLOBAL_ID_NAMES:
116 cutAndCopyList(f
'{particle}+:fake_{fake_pid}_cut0{int(cut_val*10)}', f
'{particle}+:total',
117 f
'{fake_pid} > {cut_val}', path=main)
118 for var, bin_tuple
in zip(KIN_VAR_NAMES, KIN_VAR_BINS):
121 filename=GLOBALID_OUTPUT_FILENAME,
123 directory=f
'fake_cut0{int(cut_val*10)}_{particle}_{fake_pid}_{var}')
126 det_cut_value = THRESHOLDS[0]
127 for det_pid_var
in DETECTOR_PIDS:
129 det = [d
for d
in DETECTORS
if d
in det_pid_var][0]
130 if f
'_{particle}_' in det_pid_var:
131 cutAndCopyList(f
'{particle}+:eff_{det_pid_var}_cut0{int(det_cut_value*10)}', f
'{particle}+:total_{det}',
132 f
'{det_pid_var} > {det_cut_value}', path=main)
134 (KIN_VAR_NAMES[0], *KIN_VAR_BINS[0]),
135 filename=DET_PID_OUTPUT_FILENAME,
137 directory=f
'eff_cut0{int(det_cut_value*10)}_{particle}_{det_pid_var}_{KIN_VAR_NAMES[0]}')
139 for var, bin_tuple
in zip(KIN_VAR_NAMES, KIN_VAR_BINS):
142 filename=GLOBALID_OUTPUT_FILENAME,
144 directory=f
'total_{particle}_{var}')
145 for det
in DETECTORS:
147 (KIN_VAR_NAMES[0], *KIN_VAR_BINS[0]),
148 filename=DET_PID_OUTPUT_FILENAME,
150 directory=f
'total_{det}_{particle}_{KIN_VAR_NAMES[0]}')
152 main.add_module(
'Progress')
154 print(basf2.statistics)
157 def add_global_plots():
159 Adds TEfficiency objects to the produced ntuple for global PID.
161 root_file = ROOT.TFile(GLOBALID_OUTPUT_FILENAME,
"UPDATE")
162 for pid, particle
in zip(GLOBAL_ID_NAMES, PARTICLE_TYPES):
163 for var
in KIN_VAR_NAMES:
164 total_obs_th1 = root_file.Get(f
'total_{particle}_{var}').Get(var)
165 for cut_val
in THRESHOLDS:
166 eff_cut_obs_th1 = root_file.Get(f
'cut0{int(cut_val*10)}_{particle}_{pid}_{var}').Get(var)
167 teff = ROOT.TEfficiency(eff_cut_obs_th1, total_obs_th1)
168 teff.SetName(f
'cut0{int(cut_val*10)}_{particle}_{pid}_{var}_eff')
169 teff.SetTitle(f
'Efficiency for {pid} > {cut_val} for {particle}; {var}; Efficiency')
170 teff.GetListOfFunctions().Add(
171 ROOT.TNamed(
"Description", f
"Efficiency plot of {pid} for {particle}")
173 teff.GetListOfFunctions().Add(ROOT.TNamed(
"Check",
"Efficiency should not decrease"))
174 teff.GetListOfFunctions().Add(ROOT.TNamed(
"Contact", PID_EXPERT))
175 options = DEFAULT_OPTIONS
176 if cut_val == THRESHOLDS[-1]:
177 options +=
" ,shifter"
178 teff.GetListOfFunctions().Add(ROOT.TNamed(
"MetaOptions", options))
180 for fake_pid
in GLOBAL_ID_NAMES:
183 fake_cut_obs_th1 = root_file.Get(f
'fake_cut0{int(cut_val*10)}_{particle}_{fake_pid}_{var}').Get(var)
184 tfake = ROOT.TEfficiency(fake_cut_obs_th1, total_obs_th1)
185 tfake.SetName(f
'cut0{int(cut_val*10)}_{particle}_{fake_pid}_{var}_fake')
186 tfake.SetTitle(f
'Fake rate for {fake_pid} > {cut_val} for {particle}; {var}; Fake rate')
187 tfake.GetListOfFunctions().Add(
188 ROOT.TNamed(
"Description", f
"Fake rate plot of {fake_pid} for {particle}")
190 tfake.GetListOfFunctions().Add(ROOT.TNamed(
"Check",
"Fake rates should not increase"))
191 tfake.GetListOfFunctions().Add(ROOT.TNamed(
"Contact", PID_EXPERT))
192 tfake.GetListOfFunctions().Add(ROOT.TNamed(
"MetaOptions", DEFAULT_OPTIONS))
196 "Global Charged PID validation plots. Shifter plots are the log-likelihood PID efficiency plots \
197 for e, μ, π, K and p particles in bins of momentum and cosTheta. If any degradation of efficiency \
198 is spotted here, please take a look at the expert plots. A decrease of efficiency might indicate: \
199 a) a work to improve the data/MC agreement; b) possible decrease of fake rate levels, \
200 see the expert plots in this section; \
201 c) a problem with a sub-detector likelihood, please take a look at \
202 the expert section of detector-only PID section. ").Write()
207 def add_detector_plots():
209 Adds TEfficiency objects to the produced ntuple for detector PID.
211 root_file = ROOT.TFile(DET_PID_OUTPUT_FILENAME,
"UPDATE")
212 var = KIN_VAR_NAMES[0]
213 cut_val = THRESHOLDS[0]
214 for det_pid_var
in DETECTOR_PIDS:
215 for particle
in PARTICLE_TYPES:
216 det = [d
for d
in DETECTORS
if d
in det_pid_var][0]
217 total_obs_th1 = root_file.Get(f
'total_{det}_{particle}_{var}').Get(var)
218 if f
'_{particle}_' in det_pid_var:
219 eff_cut_obs_th1 = root_file.Get(f
'eff_cut0{int(cut_val*10)}_{particle}_{det_pid_var}_{var}').Get(var)
220 teff = ROOT.TEfficiency(eff_cut_obs_th1, total_obs_th1)
221 teff.SetName(f
'cut0{int(cut_val*10)}_{particle}_{det_pid_var}_{var}_eff')
222 teff.SetTitle(f
'Efficiency for {det_pid_var} > {cut_val} for {particle}; {var}; Efficiency')
223 teff.GetListOfFunctions().Add(
224 ROOT.TNamed(
"Description", f
"Efficiency plot of {det_pid_var} for {particle}")
226 teff.GetListOfFunctions().Add(ROOT.TNamed(
"Check",
"Efficiency should not decrease"))
227 teff.GetListOfFunctions().Add(ROOT.TNamed(
"Contact", get_expert(det_pid_var)))
229 teff.GetListOfFunctions().Add(ROOT.TNamed(
"MetaOptions", DEFAULT_OPTIONS))
233 "Detector-based Charged PID validation."