Belle II Software  release-08-01-10
B2A306-B02RhoGamma-withPi0EtaVeto.py
1 #!/usr/bin/env python3
2 
3 
10 
11 
33 
34 import basf2 as b2
35 import modularAnalysis as ma
36 import variables.collections as vc
37 import variables.utils as vu
38 from stdCharged import stdK
39 
40 # create path
41 my_path = b2.create_path()
42 
43 # writePi0EtaVeto uses a payload in analysis global tag.
44 b2.conditions.prepend_globaltag(ma.getAnalysisGlobaltag())
45 
46 # load input ROOT file
47 ma.inputMdst(filename=b2.find_file('B2rhogamma_rho2pipi.root', 'examples', False),
48  path=my_path)
49 
50 ma.fillParticleList(decayString='gamma:highE',
51  cut='E > 1.5',
52  path=my_path)
53 ma.fillParticleList(decayString='pi+:loose',
54  cut='abs(d0) < 0.5 and abs(z0) < 0.5 and pionID > 0.002',
55  path=my_path)
56 
57 # reconstruct rho -> pi+ pi- decay
58 # keep only candidates with 0.6 < M(pi+pi-) < 1.0 GeV
59 ma.reconstructDecay(decayString='rho0 -> pi+:loose pi-:loose',
60  cut='0.6 < M < 1.0',
61  path=my_path)
62 
63 # reconstruct B0 -> rho0 gamma decay
64 # keep only candidates with Mbc > 5.2 GeV
65 # and -2 < Delta E < 2 GeV
66 ma.reconstructDecay(decayString='B0 -> rho0 gamma:highE',
67  cut='5.2 < Mbc and abs(deltaE) < 2.0',
68  path=my_path)
69 
70 # perform MC matching (MC truth association)
71 ma.matchMCTruth(list_name='B0',
72  path=my_path)
73 
74 # build RestOfEvent (ROE) object for each B0 candidate
75 # ROE is required by the veto
76 ma.buildRestOfEvent(target_list_name='B0',
77  path=my_path)
78 
79 # perform pi0/eta veto
80 # particleList : Signal side particle's particleList
81 # decayString : DecayString specifying a particle which is used to calculate the pi0/eta probability
82 # mode : One can select the payload from 'standard'(default), 'tight', 'cluster', and 'both'.
83 # Each payload is optimized for different soft-photon selection criteria.
84 # If one wants to use one's own payload and soft-photon criteria, please use arguments,
85 # pi0PayloadNameOverride, pi0SoftPhotonCutOverride, etaPayloadNameOverride, etaSoftPhotonCutOverride,
86 mode = 'standard'
87 threshold = 0.30
88 suffix = '30'
89 ma.writePi0EtaVeto(particleList='B0',
90  decayString='B0 -> rho0 ^gamma',
91  mode=mode,
92  path=my_path)
93 
94 # Perform addPi0VetoEfficiencySystematics
95 # Data/MC ratio will be provided as extraInfo related with particleList for a given threshold.
96 tableName = 'Pi0VetoEfficiencySystematics_Mar2022'
97 ma.addPi0VetoEfficiencySystematics(particleList='B0',
98  decayString='B0 -> rho0 ^gamma',
99  tableName=tableName,
100  threshold=threshold,
101  mode=mode,
102  suffix=suffix,
103  path=my_path)
104 
105 # Then one can obtain the pi0/eta probability by the variables pi0Prob(arg) and etaProb(arg).
106 # The argument corresponds to the mode which you set in writePi0EtaVeto function.
107 # In above case, one can call pi0Probe(standard) and etaProb(standard).
108 # For the B0 candidates whose gamma daughter could not be combined with
109 # any of the remaining photons to form pi0/eta because of soft photon selection
110 # NaN will be written to the pi0Probe(standard) branch and etaProb(standard) branch.
111 
112 # For the validation purpose, one may want to calculate the pi0/eta probability using a particle other than a photon.
113 # Example : B+ -> anti-D0 pi+. This is one of the modes to validate the pi0/eta veto tool.
114 stdK('loose', path=my_path)
115 ma.reconstructDecay("D0:Kpi -> K-:loose pi+:loose", "", path=my_path)
116 ma.reconstructDecay("B+:Dpi -> anti-D0:Kpi pi+:loose", "useCMSFrame(daughter(1,E))>1.4", path=my_path)
117 ma.matchMCTruth("B+:Dpi", path=my_path)
118 ma.buildRestOfEvent("B+:Dpi", path=my_path)
119 
120 # hardParticle : If one wants to use non-gamma particle to calculate the pi0/eta probability,
121 # you have to tell the particle name with an argument hardParticle. (default: gamma)
122 ma.writePi0EtaVeto(particleList='B+:Dpi',
123  decayString='B+ -> [anti-D0 -> K+ pi-] ^pi+',
124  mode='standard',
125  hardParticle='pi+',
126  path=my_path)
127 
128 
129 # The weight files are optimised by MC campaign 12.
130 # If you train by yourself, you should refer to
131 # B2A701-ContinuumSuppression_Input.py
132 # B2A702-ContinuumSuppression_MVATrain.py
133 
134 
135 # You can also do a simple veto using delta mass ranking as below.
136 
137 # VETO starts here
138 # ----------------
139 
140 # Create a new path (called ROE path) which will be executed for
141 # each ROE in an event.
142 # Note that ROE exists for each B0 candidate, so when we loop
143 # over each ROE, we effectively loop over signal B0 candidates
144 
145 roe_path = b2.create_path()
146 
147 # The ROE objects might in general be related to Particle from multiple
148 # particle lists therefore we need to check if the current ROE object
149 # is related to the Particle from our signal decay. If it is not
150 # the execution of roe_path will be finished (by starting empty,
151 # dead end path). Note that in this example this x-check is not
152 # necessary, but is anyway added for sake of completeness
153 deadEndPath = b2.create_path()
154 
155 # Note again: all actions (modules) included in roe_path will be
156 # executed for each ROE in the event
157 # First we check that the current ROE is related to B0 candidate
158 ma.signalSideParticleFilter(particleList='B0',
159  selection='',
160  roe_path=roe_path,
161  deadEndPath=deadEndPath)
162 
163 # create and fill gamma ParticleList that will contain
164 # all photons found in ROE (not used to reconstruct current B0 candidate)
165 # The photons need to have energy above 50 MeV to be considered
166 # (one can add any cut)
167 ma.fillParticleList(decayString='gamma:roe',
168  cut='isInRestOfEvent == 1 and E > 0.050',
169  path=roe_path)
170 
171 # in order to be able to use modularAnalysis functions (reconstructDecay in particular)
172 # we need a ParticleList containing the photon candidate used to reconstruct the
173 # current B meson as well
174 # The DecayString is used to specify the selected particle (^)
175 ma.fillSignalSideParticleList(outputListName='gamma:sig',
176  decayString='B0 -> rho0 ^gamma',
177  path=roe_path)
178 
179 # make combinations of signal photon candidates with all photons from ROE
180 # keep only combinations in given invariant mass range
181 ma.reconstructDecay(decayString='pi0:veto -> gamma:sig gamma:roe',
182  cut='0.080 < M < 0.200',
183  path=roe_path)
184 
185 # at this point one could use all features provided by the analysis software
186 # to make the veto as effective as possible. For example, one can perform truth
187 # matching, training/applying TMVA classifier, save pi0 candidates with ntuple
188 # maker for offline analysis/study.
189 
190 # in this example the variable, which is used to veto pi0 is very simple:
191 # invariant mass of pi0 that is closest to the pi0's nominal mass
192 # Therefore, we just simply rank pi0 candidates according to their distance
193 # from nominal mass (dM variable) and keep only the best candidate
194 ma.rankByLowest(particleList='pi0:veto',
195  variable='abs(dM)',
196  numBest=1,
197  path=roe_path)
198 
199 # write the invariant mass of the best pi0 candidate to the current B0
200 # candidate as the 'pi0veto' extraInfo
201 ma.variableToSignalSideExtraInfo(particleList='pi0:veto', varToExtraInfo={'M': 'pi0veto'}, path=roe_path)
202 
203 # execute roe_path for each RestOfEvent in the event
204 my_path.for_each('RestOfEvent', 'RestOfEvents', roe_path)
205 
206 # VETO ends here
207 # ----------------
208 
209 # we're now out of the ROE path
210 # at this stage the B0 candidates should have
211 # extraInfo(pi0veto) value attached. For the B0
212 # candidates whose gamma daughter could not be combined with
213 # any of the remaining photons to form pi0 within given mass
214 # range the extraInfo(pi0veto) does not exist. In these cases
215 # NaN will be written to the extraInfo(pi0veto) branch
216 # Select variables that we want to store to ntuple
217 
218 gamma_vars = vc.cluster + \
219  vc.mc_truth + \
220  vc.kinematics
221 
222 rho_vars = vc.cluster + \
223  vc.mc_truth + \
224  vc.kinematics + \
225  vc.inv_mass
226 
227 pi_vars = vc.track
228 
229 b_vars = vc.kinematics + \
230  vc.deltae_mbc + \
231  vc.mc_truth + \
232  vu.create_aliases_for_selected(list_of_variables=gamma_vars,
233  decay_string='B0 -> rho0 ^gamma') + \
234  vu.create_aliases_for_selected(list_of_variables=rho_vars,
235  decay_string='B0 -> ^rho0 gamma') + \
236  vu.create_aliases_for_selected(list_of_variables=pi_vars,
237  decay_string='B0 -> [rho0 -> ^pi+ ^pi-] gamma') + \
238  ['pi0Prob(standard)', 'etaProb(standard)', 'extraInfo(pi0veto)'] + \
239  [f'extraInfo(Pi0VetoEfficiencySystematics_{mode}{suffix}_data_MC_ratio)',
240  f'extraInfo(Pi0VetoEfficiencySystematics_{mode}{suffix}_data_MC_uncertainty_stat)',
241  f'extraInfo(Pi0VetoEfficiencySystematics_{mode}{suffix}_data_MC_uncertainty_sys)',
242  f'extraInfo(Pi0VetoEfficiencySystematics_{mode}{suffix}_data_MC_uncertainty_total)',
243  f'extraInfo(Pi0VetoEfficiencySystematics_{mode}{suffix}_threshold)']
244 
245 
246 # Saving variables to ntuple
247 rootOutputFile = "B2A306-B02RhoGamma-withPi0EtaVeto.root"
248 ma.variablesToNtuple(decayString='B0',
249  variables=b_vars,
250  filename=rootOutputFile,
251  treename='b0',
252  path=my_path)
253 
254 # Process the events
255 b2.process(my_path)
256 
257 # print out the summary
258 print(b2.statistics)