12 from array
import array
13 from ROOT
import TCanvas, TH1F, TLine
14 from hist_utils
import hist2array
17 '''Takes the output of combined OverlapResiduals and HistoManager modules,
18 as input, providess hit-maps for overlapping VXD hits in Layer:Sensor
19 plots and computes statistics for 2D monitoring plots.'''
22 def Median_plots_phi(filename, lyr_num, phi_bins, phi_inf, phi_sup):
24 Function to compute the median of the projected DeltaResU(V)
25 distributions for each azimuthal overlap in DeltaResU(V) vs phi plots
28 f = ROOT.TFile.Open(filename,
'read')
29 mn = f.Get(
'Monitoring_VXDOverlaps')
31 h_PhiU = mn.Get(
'h_DeltaResUPhi_Lyr' + str(lyr_num))
33 h_PhiV = mn.Get(
'h_DeltaResVPhi_Lyr' + str(lyr_num))
40 ': medians of #Deltares_{u} for each overlap',
50 ': medians of #Deltares_{v} for each overlap',
58 p_U = array(
'd', [0.5])
60 p_V = array(
'd', [0.5])
68 c_PhiU = TCanvas(
'c_PhiU_' + str(lyr_num),
'DeltaResUPhi_' + str(lyr_num), 700, 500)
69 c_PhiV = TCanvas(
'c_PhiV_' + str(lyr_num),
'DeltaResVPhi_' + str(lyr_num), 700, 500)
70 if(lyr_num == 1
or lyr_num == 3):
82 c_PhiUMedians = TCanvas(
'c_PhiUMedians_' + str(lyr_num),
'UMedians_' + str(lyr_num), 700, 500)
83 c_PhiVMedians = TCanvas(
'c_PhiVMedians_' + str(lyr_num),
'VMedians_' + str(lyr_num), 700, 500)
84 for i
in range(0, phi_bins):
85 xinf = phi_inf + i * (phi_sup - phi_inf) / phi_bins
86 xsup = phi_inf + (i + 1) * (phi_sup - phi_inf) / phi_bins
87 h_PhiU.GetXaxis().SetRangeUser(xinf, xsup)
88 h_PhiV.GetXaxis().SetRangeUser(xinf, xsup)
89 h_PhiU.ProjectionY().GetQuantiles(1, q_U, p_U)
90 h_PhiV.ProjectionY().GetQuantiles(1, q_V, p_V)
91 h_U = h_PhiU.ProjectionY()
92 h_V = h_PhiV.ProjectionY()
93 h_U.SetTitle(str(round(xinf, 3)) +
' < #phi < ' + str(round(xsup, 3)))
94 h_V.SetTitle(str(round(xinf, 3)) +
' < #phi < ' + str(round(xsup, 3)))
95 h_U.GetXaxis().SetRangeUser(-200, 200)
96 h_V.GetXaxis().SetRangeUser(-200, 200)
98 h_U.GetYaxis().SetRangeUser(0, 300)
99 h_V.GetYaxis().SetRangeUser(0, 300)
100 median_pos_U = TLine(q_U[0], 0, q_U[0], 300)
101 median_pos_V = TLine(q_V[0], 0, q_V[0], 300)
103 h_U.GetYaxis().SetRangeUser(0, 500)
104 h_V.GetYaxis().SetRangeUser(0, 500)
105 median_pos_U = TLine(q_U[0], 0, q_U[0], 500)
106 median_pos_V = TLine(q_V[0], 0, q_V[0], 500)
108 h_U.GetYaxis().SetRangeUser(0, 2000)
109 h_V.GetYaxis().SetRangeUser(0, 2000)
110 median_pos_U = TLine(q_U[0], 0, q_U[0], 2000)
111 median_pos_V = TLine(q_V[0], 0, q_V[0], 2000)
113 h_U.GetYaxis().SetRangeUser(0, 1000)
114 h_V.GetYaxis().SetRangeUser(0, 1000)
115 median_pos_U = TLine(q_U[0], 0, q_U[0], 1000)
116 median_pos_V = TLine(q_V[0], 0, q_V[0], 1000)
118 h_U.GetYaxis().SetRangeUser(0, 1000)
119 h_V.GetYaxis().SetRangeUser(0, 1000)
120 median_pos_U = TLine(q_U[0], 0, q_U[0], 1000)
121 median_pos_V = TLine(q_V[0], 0, q_V[0], 1000)
122 median_pos_U.SetLineWidth(2)
123 median_pos_V.SetLineWidth(2)
124 median_pos_U.SetLineColor(2)
125 median_pos_V.SetLineColor(2)
126 l_U_median_pos.append(median_pos_U)
127 l_V_median_pos.append(median_pos_V)
128 h_U.GetYaxis().SetTitle(
'counts')
129 h_V.GetYaxis().SetTitle(
'counts')
130 meas_U = hist2array(h_U)
131 meas_V = hist2array(h_V)
132 bs_U = numpy.random.poisson(1., (len(meas_U), Nrs))
133 bs_V = numpy.random.poisson(1., (len(meas_V), Nrs))
135 toy_U = numpy.repeat(meas_U, bs_U[:, j])
136 toy_V = numpy.repeat(meas_V, bs_V[:, j])
137 median_U_toy = numpy.median(toy_U)
138 median_V_toy = numpy.median(toy_V)
139 l_U_median.append(median_U_toy)
140 l_V_median.append(median_V_toy)
141 median_U_rs = numpy.array(l_U_median)
142 median_V_rs = numpy.array(l_V_median)
143 median_U_dev = numpy.std(median_U_rs)
144 median_V_dev = numpy.std(median_V_rs)
145 h_UMedians.SetBinContent(i + 1, q_U[0])
146 h_UMedians.SetBinError(i + 1, median_U_dev)
147 h_VMedians.SetBinContent(i + 1, q_V[0])
148 h_VMedians.SetBinError(i + 1, median_V_dev)
151 l_U_median_pos[i].Draw(
"SAME")
154 l_V_median_pos[i].Draw(
"SAME")
156 h_UMedians.GetXaxis().SetTitle(
'#phi (rad)')
157 h_UMedians.GetYaxis().SetTitle(
'Median of #Deltares_{u} (#mum)')
160 h_VMedians.GetXaxis().SetTitle(
'#phi (rad)')
161 h_VMedians.GetYaxis().SetTitle(
'Median of #Deltares_{V} (#mum)')
164 if not os.path.exists(
'Median_plots_OverlapsPhi'):
165 os.mkdir(
'Median_plots_OverlapsPhi')
166 c_PhiU.SaveAs(
'Median_plots_OverlapsPhi/Median_and_DeltaResUPhi_Lyr' + str(lyr_num) +
'.root')
167 c_PhiU.SaveAs(
'Median_plots_OverlapsPhi/Median_and_DeltaResUPhi_Lyr' + str(lyr_num) +
'.pdf')
168 c_PhiV.SaveAs(
'Median_plots_OverlapsPhi/Median_and_DeltaResVPhi_Lyr' + str(lyr_num) +
'.root')
169 c_PhiV.SaveAs(
'Median_plots_OverlapsPhi/Median_and_DeltaResVPhi_Lyr' + str(lyr_num) +
'.pdf')
170 c_PhiUMedians.SaveAs(
'Median_plots_OverlapsPhi/Lyr' + str(lyr_num) +
'_DeltaResUMedians_vs_phi.root')
171 c_PhiUMedians.SaveAs(
'Median_plots_OverlapsPhi/Lyr' + str(lyr_num) +
'_DeltaResUMedians_vs_phi.pdf')
172 c_PhiVMedians.SaveAs(
'Median_plots_OverlapsPhi/Lyr' + str(lyr_num) +
'_DeltaResVMedians_vs_phi.root')
173 c_PhiVMedians.SaveAs(
'Median_plots_OverlapsPhi/Lyr' + str(lyr_num) +
'_DeltaResVMedians_vs_phi.pdf')
177 def Median_plots_z(filename, lyr_num, z_bins, z_inf, z_sup):
179 Function to compute the median of the projected DeltaResU(V) distributions
180 for each sensor in DeltaResU(V) vs z plots
183 f = ROOT.TFile.Open(filename,
'read')
184 mn = f.Get(
'Monitoring_VXDOverlaps')
186 h_ZU = mn.Get(
'h_DeltaResUz_Lyr' + str(lyr_num))
188 h_ZV = mn.Get(
'h_DeltaResVz_Lyr' + str(lyr_num))
190 h_UMedians = TH1F(
'h_UMedians_Lyr' + str(lyr_num),
'Layer' + str(lyr_num) +
191 ': medians of #Deltares_{u} for each sensor', z_bins, z_inf, z_sup)
193 h_VMedians = TH1F(
'h_VMedians_Lyr' + str(lyr_num),
'Layer' + str(lyr_num) +
194 ': medians of #Deltares_{v} for each sensor', z_bins, z_inf, z_sup)
198 q_U = array(
'd', [0])
199 p_U = array(
'd', [0.5])
200 q_V = array(
'd', [0])
201 p_V = array(
'd', [0.5])
209 c_ZU = TCanvas(
'c_ZU_' + str(lyr_num),
'DeltaResUZ_' + str(lyr_num), 700, 500)
210 c_ZV = TCanvas(
'c_ZV_' + str(lyr_num),
'DeltaResVZ_' + str(lyr_num), 700, 500)
211 if(lyr_num == 1
or lyr_num == 3):
217 if(lyr_num == 5
or lyr_num == 6):
220 c_ZUMedians = TCanvas(
'c_ZUMedians_' + str(lyr_num),
'UMedians_' + str(lyr_num), 700, 500)
221 c_ZVMedians = TCanvas(
'c_ZVMedians_' + str(lyr_num),
'VMedians_' + str(lyr_num), 700, 500)
222 for i
in range(0, z_bins):
223 xinf = z_inf + i * (z_sup - z_inf) / z_bins
224 xsup = z_inf + (i + 1) * (z_sup - z_inf) / z_bins
225 h_ZU.GetXaxis().SetRangeUser(xinf, xsup)
226 h_ZV.GetXaxis().SetRangeUser(xinf, xsup)
227 h_ZU.ProjectionY().GetQuantiles(1, q_U, p_U)
228 h_ZV.ProjectionY().GetQuantiles(1, q_V, p_V)
229 h_U = h_ZU.ProjectionY()
230 h_V = h_ZV.ProjectionY()
231 h_U.SetTitle(str(round(xinf, 3)) +
' (cm) < z < ' + str(round(xsup, 3)) +
' (cm)')
232 h_V.SetTitle(str(round(xinf, 3)) +
' (cm) < z < ' + str(round(xsup, 3)) +
' (cm)')
233 h_U.GetXaxis().SetRangeUser(-200, 200)
234 h_V.GetXaxis().SetRangeUser(-200, 200)
236 h_U.GetYaxis().SetRangeUser(0, 500)
237 h_V.GetYaxis().SetRangeUser(0, 500)
238 median_pos_U = TLine(q_U[0], 0, q_U[0], 500)
239 median_pos_V = TLine(q_V[0], 0, q_V[0], 500)
241 h_U.GetYaxis().SetRangeUser(0, 2000)
242 h_V.GetYaxis().SetRangeUser(0, 2000)
243 median_pos_U = TLine(q_U[0], 0, q_U[0], 2000)
244 median_pos_V = TLine(q_V[0], 0, q_V[0], 2000)
246 h_U.GetYaxis().SetRangeUser(0, 7000)
247 h_V.GetYaxis().SetRangeUser(0, 7000)
248 median_pos_U = TLine(q_U[0], 0, q_U[0], 7000)
249 median_pos_V = TLine(q_V[0], 0, q_V[0], 7000)
251 h_U.GetYaxis().SetRangeUser(0, 3000)
252 h_V.GetYaxis().SetRangeUser(0, 3000)
253 median_pos_U = TLine(q_U[0], 0, q_U[0], 3000)
254 median_pos_V = TLine(q_V[0], 0, q_V[0], 3000)
256 h_U.GetYaxis().SetRangeUser(0, 3000)
257 h_V.GetYaxis().SetRangeUser(0, 3000)
258 median_pos_U = TLine(q_U[0], 0, q_U[0], 3000)
259 median_pos_V = TLine(q_V[0], 0, q_V[0], 3000)
260 median_pos_U.SetLineWidth(2)
261 median_pos_V.SetLineWidth(2)
262 median_pos_U.SetLineColor(2)
263 median_pos_V.SetLineColor(2)
264 l_U_median_pos.append(median_pos_U)
265 l_V_median_pos.append(median_pos_V)
266 h_U.GetYaxis().SetTitle(
'counts')
267 h_V.GetYaxis().SetTitle(
'counts')
268 meas_U = hist2array(h_U)
269 meas_V = hist2array(h_V)
270 bs_U = numpy.random.poisson(1., (len(meas_U), Nrs))
271 bs_V = numpy.random.poisson(1., (len(meas_V), Nrs))
273 toy_U = numpy.repeat(meas_U, bs_U[:, j])
274 toy_V = numpy.repeat(meas_V, bs_V[:, j])
275 median_U_toy = numpy.median(toy_U)
276 median_V_toy = numpy.median(toy_V)
277 l_U_median.append(median_U_toy)
278 l_V_median.append(median_V_toy)
279 median_U_rs = numpy.array(l_U_median)
280 median_V_rs = numpy.array(l_V_median)
281 median_U_dev = numpy.std(median_U_rs)
282 median_V_dev = numpy.std(median_V_rs)
283 h_UMedians.SetBinContent(i + 1, q_U[0])
284 h_UMedians.SetBinError(i + 1, median_U_dev)
285 h_VMedians.SetBinContent(i + 1, q_V[0])
286 h_VMedians.SetBinError(i + 1, median_V_dev)
289 l_U_median_pos[i].Draw(
"SAME")
292 l_V_median_pos[i].Draw(
"SAME")
294 h_UMedians.GetXaxis().SetTitle(
'z (cm)')
295 h_UMedians.GetYaxis().SetTitle(
'Median of #Deltares_{u} (#mum)')
298 h_VMedians.GetXaxis().SetTitle(
'z (cm)')
299 h_VMedians.GetYaxis().SetTitle(
'Median of #Deltares_{V} (#mum)')
302 if not os.path.exists(
'Median_plots_OverlapsZ'):
303 os.mkdir(
'Median_plots_OverlapsZ')
304 c_ZU.SaveAs(
'Median_plots_OverlapsZ/Median_and_DeltaResUZ_Lyr' + str(lyr_num) +
'.root')
305 c_ZU.SaveAs(
'Median_plots_OverlapsZ/Median_and_DeltaResUZ_Lyr' + str(lyr_num) +
'.pdf')
306 c_ZV.SaveAs(
'Median_plots_OverlapsZ/Median_and_DeltaResVZ_Lyr' + str(lyr_num) +
'.root')
307 c_ZV.SaveAs(
'Median_plots_OverlapsZ/Median_and_DeltaResVZ_Lyr' + str(lyr_num) +
'.pdf')
308 c_ZUMedians.SaveAs(
'Median_plots_OverlapsZ/Lyr' + str(lyr_num) +
'_DeltaResUMedians_vs_z.root')
309 c_ZUMedians.SaveAs(
'Median_plots_OverlapsZ/Lyr' + str(lyr_num) +
'_DeltaResUMedians_vs_z.pdf')
310 c_ZVMedians.SaveAs(
'Median_plots_OverlapsZ/Lyr' + str(lyr_num) +
'_DeltaResVMedians_vs_z.root')
311 c_ZVMedians.SaveAs(
'Median_plots_OverlapsZ/Lyr' + str(lyr_num) +
'_DeltaResVMedians_vs_z.pdf')
315 def LayerSensorPlots(filename, lyr_num, lddr_num, snsr_num):
317 Creates and saves Layer.Sensor plots for overlapping hits hitmaps
320 f = ROOT.TFile.Open(filename,
'read')
321 hm = f.Get(
'HitMaps_VXDOverlaps')
323 if not os.path.exists(
'HitMaps_plots_Overlaps'):
324 os.mkdir(
'HitMaps_plots_Overlaps')
327 for i
in range(1, snsr_num + 1):
328 c_Meas = TCanvas(
'c_Meas_' + str(lyr_num) +
':' + str(i),
'Layer:Sensor = ' + str(lyr_num) +
':' + str(i), 500, 700)
341 for k
in range(1, lddr_num + 1):
342 histo = hm.Get(
'h_' + str(lyr_num) + str(k) + str(i))
345 c_Meas.SaveAs(
'HitMaps_plots_Overlaps/c_Layer:Sensor_' + str(lyr_num) + str(i) +
'.root')
346 c_Meas.SaveAs(
'HitMaps_plots_Overlaps/c_Layer:Sensor_' + str(lyr_num) + str(i) +
'.pdf')
351 filename =
'histofile.root'
353 if __name__ ==
"__main__":
355 VXDLayers = {1: {
'Layer': 1,
'Ladders': 8,
'Sensors': 2,
'Phi_bins': 8,
356 'Phi_inf': -3.2,
'Phi_sup': 3.2,
'Z_bins': 2,
'Z_inf': -3.2,
'Z_sup': 5.9},
357 3: {
'Layer': 3,
'Ladders': 7,
'Sensors': 2,
'Phi_bins': 7,
358 'Phi_inf': -3.0,
'Phi_sup': 3.0,
'Z_bins': 2,
'Z_inf': -9.5,
'Z_sup': 15.5},
359 4: {
'Layer': 4,
'Ladders': 10,
'Sensors': 3,
'Phi_bins': 10,
360 'Phi_inf': -3.0,
'Phi_sup': 3.0,
'Z_bins': 3,
'Z_inf': -16.5,
'Z_sup': 21.5},
361 5: {
'Layer': 5,
'Ladders': 12,
'Sensors': 4,
'Phi_bins': 13,
362 'Phi_inf': -3.2,
'Phi_sup': 3.2,
'Z_bins': 4,
'Z_inf': -20.5,
'Z_sup': 29.5},
363 6: {
'Layer': 6,
'Ladders': 16,
'Sensors': 5,
'Phi_bins': 17,
364 'Phi_inf': -3.3,
'Phi_sup': 3.3,
'Z_bins': 5,
'Z_inf': -25.5,
'Z_sup': 36.5}}
366 for i
in range(1, 7):
372 lyr_num=VXDLayers[i][
'Layer'],
373 lddr_num=VXDLayers[i][
'Ladders'],
374 snsr_num=VXDLayers[i][
'Sensors'])
377 lyr_num=VXDLayers[i][
'Layer'],
378 phi_bins=VXDLayers[i][
'Phi_bins'],
379 phi_inf=VXDLayers[i][
'Phi_inf'],
380 phi_sup=VXDLayers[i][
'Phi_sup'])
383 lyr_num=VXDLayers[i][
'Layer'],
384 z_bins=VXDLayers[i][
'Z_bins'],
385 z_inf=VXDLayers[i][
'Z_inf'],
386 z_sup=VXDLayers[i][
'Z_sup'])