Belle II Software  release-08-01-10
caf_pxd.py
1 
8 
9 """
10 airflow script for PXD hot/dead pixel masking.
11 """
12 
13 import basf2
14 from pxd.calibration import hot_pixel_mask_calibration
15 from prompt.utils import filter_by_max_files_per_run, filter_by_max_events_per_run
16 from prompt import CalibrationSettings, INPUT_DATA_FILTERS
17 from caf.utils import IoV
18 from itertools import groupby
19 from itertools import chain
20 from math import ceil
21 
22 
23 settings = CalibrationSettings(name="PXD hot/dead pixel calibration",
24  expert_username="takaham",
25  description=__doc__,
26  input_data_formats=["raw"],
27  input_data_names=["beamorphysics", "cosmic"],
28  input_data_filters={
29  "beamorphysics": [
30  INPUT_DATA_FILTERS["Data Tag"]["bhabha_all_calib"],
31  INPUT_DATA_FILTERS["Data Tag"]["gamma_gamma_calib"],
32  INPUT_DATA_FILTERS["Data Tag"]["hadron_calib"],
33  INPUT_DATA_FILTERS["Data Tag"]["offip_calib"],
34  INPUT_DATA_FILTERS["Data Tag"]["cosmic_calib"],
35  INPUT_DATA_FILTERS["Beam Energy"]["4S"],
36  INPUT_DATA_FILTERS["Beam Energy"]["Continuum"],
37  INPUT_DATA_FILTERS["Beam Energy"]["Scan"],
38  INPUT_DATA_FILTERS["Beam Energy"][""],
39  INPUT_DATA_FILTERS["Run Type"]["physics"],
40  INPUT_DATA_FILTERS["Data Quality Tag"]["Good Or Recoverable"]],
41  "cosmic": [INPUT_DATA_FILTERS["Run Type"]["cosmic"]]},
42  expert_config={
43  "max_events_per_run": 400000,
44  "max_files_per_run": 20, # only valid when max_events/run <= 0
45  },
46  depends_on=[])
47 
48 
49 def get_calibrations(input_data, **kwargs):
50  """
51  Parameters:
52  input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
53  Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
54  assigning to calibration.files_to_iov
55 
56  **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
57  backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
58  release explicitly if you want to.
59 
60  Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
61  correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
62 
63  Returns:
64  list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
65  """
66 
67  # Set up config options
68  requested_iov = kwargs.get("requested_iov", None)
69  expert_config = kwargs.get("expert_config")
70  cal_kwargs = expert_config.get("kwargs", {})
71  output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
72  expert_config = kwargs.get("expert_config")
73  max_events_per_run = expert_config["max_events_per_run"]
74  max_files_per_run = expert_config["max_files_per_run"]
75  min_files_per_chunk = 10
76  min_events_per_file = 1000 # avoid empty files
77 
78  # Read input_data
79  file_to_iov_physics = input_data["beamorphysics"]
80  file_to_iov_cosmics = input_data["cosmic"]
81 
82  # Reduce data and create calibration instances for different data categories
83  cal_list = []
84  if max_events_per_run <= 0:
85  basf2.B2INFO(f"Reducing to a maximum of {max_files_per_run} files per run.")
86  reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics,
87  max_files_per_run, min_events_per_file)
88  reduced_file_to_iov_cosmics = filter_by_max_files_per_run(file_to_iov_cosmics,
89  max_files_per_run, min_events_per_file)
90  else:
91  basf2.B2INFO(f"Reducing to a maximum of {max_events_per_run} events per run.")
92  reduced_file_to_iov_physics = filter_by_max_events_per_run(file_to_iov_physics,
93  max_events_per_run, random_select=True)
94  reduced_file_to_iov_cosmics = filter_by_max_events_per_run(file_to_iov_cosmics,
95  max_events_per_run, random_select=True)
96 
97  # Create run chunks based on exp no. and run type
98  iov_set_physics = set(reduced_file_to_iov_physics.values())
99  iov_set_cosmics = set(reduced_file_to_iov_cosmics.values())
100 
101  iov_list_cosmics = list(sorted(iov_set_cosmics))
102  # iov_list_physics = list(sorted(iov_set_physics))
103  iov_list_all = list(sorted(iov_set_cosmics | iov_set_physics))
104 
105  exp_set = {iov.exp_low for iov in iov_list_all}
106  chunks_exp = []
107  for exp in sorted(exp_set):
108  chunks_exp += [list(g) for k, g in groupby(iov_list_all, lambda x: x.exp_low == exp) if k]
109 
110  chunks_phy = []
111  chunks_cosmic = []
112  for chunk_exp in chunks_exp:
113  chunks_phy += [list(g) for k, g in groupby(chunk_exp, lambda x: x in iov_list_cosmics) if not k]
114  chunks_cosmic += [list(g) for k, g in groupby(chunk_exp, lambda x: x in iov_list_cosmics) if k]
115 
116  # Create calibrations
117 
118  # Physics or beam run
119  chunk_list = chunks_phy
120  input_data = reduced_file_to_iov_physics
121  iCal = 0
122  for ichunk, chunk in enumerate(chunk_list):
123  first_iov = IoV(chunk[0].exp_low, chunk[0].run_low, -1, -1)
124  last_iov = IoV(chunk[-1].exp_low, chunk[-1].run_low, -1, -1)
125  if last_iov < output_iov: # All the chunk iovs are earlier than the requested
126  continue
127  else:
128  input_files = list(chain.from_iterable([list(g) for k, g in groupby(
129  input_data, lambda x: input_data[x] in chunk) if k]))
130  # Check the minimum number of files in the physics/beam run chunk
131  if len(input_files) < min_files_per_chunk:
132  continue
133  # From the second chunk within the requested range, we have the iov defined by the first run
134  specific_iov = first_iov if iCal > 0 else output_iov
135  basf2.B2INFO(f"Total number of files actually used as input = {len(input_files)} for the output {specific_iov}")
136  cal = hot_pixel_mask_calibration(
137  cal_name="{}_PXDHotPixelMaskCalibration_BeamorPhysics".format(iCal + 1),
138  input_files=input_files,
139  **cal_kwargs)
140  cal.algorithms[0].params = {"iov_coverage": specific_iov}
141  cal_list.append(cal)
142  iCal += 1
143 
144  # Cosmic run
145  nCal_phy = iCal
146  chunk_list = chunks_cosmic
147  input_data = reduced_file_to_iov_cosmics
148  for ichunk, chunk in enumerate(chunk_list):
149  first_iov = IoV(chunk[0].exp_low, chunk[0].run_low, chunk[-1].exp_high, chunk[-1].run_high)
150  last_iov = IoV(chunk[-1].exp_low, chunk[-1].run_low, chunk[-1].exp_high, chunk[-1].run_high)
151  if last_iov < output_iov: # All the chunk iovs are earlier than the requested
152  continue
153  # From the first chunk within the requested range, we have the iov defined by the first run
154  if iCal == nCal_phy:
155  specific_iov = max(first_iov, IoV(
156  requested_iov.exp_low, requested_iov.run_low, chunk[-1].exp_high, chunk[-1].run_high))
157  else:
158  specific_iov = first_iov
159  input_files = list(chain.from_iterable([list(g) for k, g in groupby(
160  input_data, lambda x: input_data[x] in chunk) if k]))
161  basf2.B2INFO(f"Total number of files actually used as input = {len(input_files)} for the output {specific_iov}")
162  cal = hot_pixel_mask_calibration(
163  cal_name="{}_PXDHotPixelMaskCalibration_Cosmic".format(iCal + 1),
164  input_files=input_files,
165  run_type='cosmic',
166  **cal_kwargs)
167  cal.algorithms[0].params = {"iov_coverage": specific_iov} # Not valid when using SimpleRunByRun strategy
168  cal_list.append(cal)
169  iCal += 1
170 
171  # The number of calibrations depends on the 'chunking' above. We would like to make sure that the total number of
172  # batch jobs submitted is approximately constant and reasonable, no matter how many files and chunks are used.
173  # So we define 1000 total jobs and split this between the calibrations depending on the fraction of total input files
174  # in the calibrations.
175 
176  total_jobs = 1000
177  total_input_files = len(reduced_file_to_iov_physics) + len(reduced_file_to_iov_cosmics)
178 
179  for cal in cal_list:
180  fraction_of_input_files = len(cal.input_files)/total_input_files
181  # Assign the max collector jobs to be roughly the same fraction of total jobs
182  cal.max_collector_jobs = ceil(fraction_of_input_files * total_jobs)
183  basf2.B2INFO(f"{cal.name} will submit a maximum of {cal.max_collector_jobs} batch jobs")
184 
185  return cal_list