Belle II Software  release-08-01-10
caf_pxd_gain.py
1 
8 
9 """
10 airflow script for PXD gain calibration.
11 """
12 
13 import basf2
14 from pxd.calibration import gain_calibration
15 from prompt.utils import filter_by_max_files_per_run, filter_by_max_events_per_run
16 from prompt import CalibrationSettings, INPUT_DATA_FILTERS
17 from caf.utils import ExpRun, IoV
18 from itertools import groupby
19 from itertools import chain
20 from math import ceil, inf
21 from prompt.calibrations.caf_beamspot import settings as beamspot_calibration
22 
23 
24 settings = CalibrationSettings(name="PXD gain calibration",
25  expert_username="takaham",
26  description=__doc__,
27  input_data_formats=["cdst"],
28  input_data_names=["physics"],
29  input_data_filters={
30  "physics": [
31  INPUT_DATA_FILTERS["Data Tag"]["bhabha_all_calib"],
32  INPUT_DATA_FILTERS["Beam Energy"]["4S"],
33  INPUT_DATA_FILTERS["Beam Energy"]["Continuum"],
34  INPUT_DATA_FILTERS["Beam Energy"]["Scan"],
35  INPUT_DATA_FILTERS["Beam Energy"][""],
36  INPUT_DATA_FILTERS["Run Type"]["physics"],
37  INPUT_DATA_FILTERS["Data Quality Tag"]["Good"]]},
38  expert_config={
39  "debug": False,
40  "total_jobs": 1000,
41  "gain_method": "analytic",
42  "min_files_per_chunk": 10,
43  "min_events_per_file": 1000, # avoid empty files
44  "max_events_per_run": 4000000,
45  "max_files_per_run": 20, # only valid when max_events/run = 0
46  "payload_boundaries": []
47  },
48  depends_on=[beamspot_calibration])
49 
50 
51 def get_calibrations(input_data, **kwargs):
52  """
53  Parameters:
54  input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
55  Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
56  assigning to calibration.files_to_iov
57 
58  **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
59  backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
60  release explicitly if you want to.
61 
62  Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
63  correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
64 
65  Returns:
66  list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
67  """
68 
69  # Set up config options
70  requested_iov = kwargs.get("requested_iov", None)
71  output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
72  # expert config
73  expert_config = kwargs.get("expert_config")
74  gain_method = expert_config["gain_method"]
75  debug = expert_config["debug"]
76  total_jobs = expert_config["total_jobs"]
77  max_events_per_run = expert_config["max_events_per_run"]
78  max_files_per_run = expert_config["max_files_per_run"]
79  min_files_per_chunk = expert_config["min_files_per_chunk"]
80  min_events_per_file = expert_config["min_events_per_file"]
81  cal_kwargs = expert_config.get("kwargs", {})
82 
83  # print all config
84  basf2.B2INFO(f"Requested iov: {requested_iov} ")
85  basf2.B2INFO(f"Expert config: {expert_config} ")
86  # basf2.B2INFO(f"Expert sets payload boundaries are: {expert_config['payload_boundaries']} ")
87 
88  # Read input_data
89  file_to_iov_physics = input_data["physics"]
90 
91  # Reduce data and create calibration instances for different data categories
92  cal_list = []
93  if max_events_per_run < 0:
94  basf2.B2INFO("No file reduction applied.")
95  reduced_file_to_iov_physics = file_to_iov_physics
96  elif max_events_per_run == 0:
97  basf2.B2INFO(f"Reducing to a maximum of {max_files_per_run} files per run.")
98  reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics,
99  max_files_per_run, min_events_per_file)
100  else:
101  basf2.B2INFO(f"Reducing to a maximum of {max_events_per_run} events per run.")
102  reduced_file_to_iov_physics = filter_by_max_events_per_run(file_to_iov_physics,
103  max_events_per_run, random_select=True)
104 
105  # input_files_physics = list(reduced_file_to_iov_physics.keys())
106  input_iov_set_physics = set(reduced_file_to_iov_physics.values())
107  exp_set = {iov.exp_low for iov in input_iov_set_physics}
108 
109  # boundaries setting for run chunks (At certain runs, gain was tuned)
110  payload_boundaries = [ExpRun(output_iov.exp_low, output_iov.run_low)]
111  payload_boundaries.extend([ExpRun(*boundary) for boundary in expert_config["payload_boundaries"]])
112  # We don't need run 0 for the first exp as it's handled by output_iov
113  payload_boundaries.extend([ExpRun(exp, 0) for exp in sorted(exp_set)[1:]])
114  basf2.B2INFO(f"Final Boundaries: {payload_boundaries}")
115 
116  # run chunk creation
117  chunks_head = payload_boundaries
118  chunks_tail = payload_boundaries[1:] + [ExpRun(inf, inf)]
119  iov_chunks = [list(g) for k, g in groupby(sorted(input_iov_set_physics),
120  lambda x: [i for i, j in zip(chunks_head, chunks_tail) if i <= x < j])]
121 
122  # Create calibrations from chunks
123  input_file_to_iov = reduced_file_to_iov_physics
124  iCal = 0
125  for ichunk, chunk in enumerate(iov_chunks):
126  first_iov = IoV(chunk[0].exp_low, chunk[0].run_low, -1, -1)
127  last_iov = IoV(chunk[-1].exp_low, chunk[-1].run_low, -1, -1)
128  if last_iov < output_iov: # All the chunk iovs are earlier than the requested
129  continue
130  else:
131  input_files = list(chain.from_iterable([list(g) for k, g in groupby(
132  input_file_to_iov, lambda x: input_file_to_iov[x] in chunk) if k]))
133  # Check the minimum number of files in the physics/beam run chunk
134  if len(input_files) < min_files_per_chunk:
135  basf2.B2WARNING(f"No enough file in sub run chunk [{chunk[0]},{chunk[-1]}]: {len(input_files)},\
136 but {min_files_per_chunk} required!")
137  continue
138  # From the second chunk within the requested range, we have the iov defined by the first run
139  specific_iov = first_iov if iCal > 0 else output_iov
140  basf2.B2INFO(f"Total number of files actually used as input = {len(input_files)} for the output {specific_iov}")
141  cal_name = f"{ichunk+1}_PXDAnalyticGainCalibration"
142  if (not debug):
143  cal = gain_calibration(
144  cal_name=cal_name,
145  gain_method=gain_method,
146  # boundaries=vector_from_runs(payload_boundaries),
147  input_files=input_files,
148  **cal_kwargs)
149  for alg in cal.algorithms:
150  alg.params["iov_coverage"] = specific_iov
151  cal_list.append(cal)
152  else:
153  basf2.B2INFO(f"Dry run on Calibration(name={cal_name})")
154  iCal += 1
155 
156  # The number of calibrations depends on the 'chunking' above. We would like to make sure that the total number of
157  # batch jobs submitted is approximately constant and reasonable, no matter how many files and chunks are used.
158  # So we define 1000 total jobs and split this between the calibrations depending on the fraction of total input
159  # files in the calibrations.
160 
161  # total_jobs = expert_config["total_jobs"]
162  total_input_files = len(reduced_file_to_iov_physics)
163 
164  for cal in cal_list:
165  fraction_of_input_files = len(cal.input_files) / total_input_files
166  # Assign the max collector jobs to be roughly the same fraction of total jobs
167  cal.max_collector_jobs = ceil(fraction_of_input_files * total_jobs)
168  basf2.B2INFO(f"{cal.name} will submit a maximum of {cal.max_collector_jobs} batch jobs")
169 
170  return cal_list