10 airflow script for PXD gain calibration.
15 from prompt.utils import filter_by_max_files_per_run, filter_by_max_events_per_run
16 from prompt
import CalibrationSettings, INPUT_DATA_FILTERS
17 from caf.utils
import ExpRun, IoV
18 from itertools
import groupby
19 from itertools
import chain
20 from math
import ceil, inf
21 from prompt.calibrations.caf_beamspot
import settings
as beamspot_calibration
24 settings = CalibrationSettings(name=
"PXD gain calibration",
25 expert_username=
"takaham",
27 input_data_formats=[
"cdst"],
28 input_data_names=[
"physics"],
31 INPUT_DATA_FILTERS[
"Data Tag"][
"bhabha_all_calib"],
32 INPUT_DATA_FILTERS[
"Beam Energy"][
"4S"],
33 INPUT_DATA_FILTERS[
"Beam Energy"][
"Continuum"],
34 INPUT_DATA_FILTERS[
"Beam Energy"][
"Scan"],
35 INPUT_DATA_FILTERS[
"Beam Energy"][
""],
36 INPUT_DATA_FILTERS[
"Run Type"][
"physics"],
37 INPUT_DATA_FILTERS[
"Data Quality Tag"][
"Good"]]},
41 "gain_method":
"analytic",
42 "min_files_per_chunk": 10,
43 "min_events_per_file": 1000,
44 "max_events_per_run": 4000000,
45 "max_files_per_run": 20,
46 "payload_boundaries": []
48 depends_on=[beamspot_calibration])
51 def get_calibrations(input_data, **kwargs):
54 input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
55 Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
56 assigning to calibration.files_to_iov
58 **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
59 backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
60 release explicitly if you want to.
62 Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
63 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
66 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
70 requested_iov = kwargs.get(
"requested_iov",
None)
71 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
73 expert_config = kwargs.get(
"expert_config")
74 gain_method = expert_config[
"gain_method"]
75 debug = expert_config[
"debug"]
76 total_jobs = expert_config[
"total_jobs"]
77 max_events_per_run = expert_config[
"max_events_per_run"]
78 max_files_per_run = expert_config[
"max_files_per_run"]
79 min_files_per_chunk = expert_config[
"min_files_per_chunk"]
80 min_events_per_file = expert_config[
"min_events_per_file"]
81 cal_kwargs = expert_config.get(
"kwargs", {})
84 basf2.B2INFO(f
"Requested iov: {requested_iov} ")
85 basf2.B2INFO(f
"Expert config: {expert_config} ")
89 file_to_iov_physics = input_data[
"physics"]
93 if max_events_per_run < 0:
94 basf2.B2INFO(
"No file reduction applied.")
95 reduced_file_to_iov_physics = file_to_iov_physics
96 elif max_events_per_run == 0:
97 basf2.B2INFO(f
"Reducing to a maximum of {max_files_per_run} files per run.")
98 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics,
99 max_files_per_run, min_events_per_file)
101 basf2.B2INFO(f
"Reducing to a maximum of {max_events_per_run} events per run.")
102 reduced_file_to_iov_physics = filter_by_max_events_per_run(file_to_iov_physics,
103 max_events_per_run, random_select=
True)
106 input_iov_set_physics = set(reduced_file_to_iov_physics.values())
107 exp_set = {iov.exp_low
for iov
in input_iov_set_physics}
110 payload_boundaries = [ExpRun(output_iov.exp_low, output_iov.run_low)]
111 payload_boundaries.extend([ExpRun(*boundary)
for boundary
in expert_config[
"payload_boundaries"]])
113 payload_boundaries.extend([ExpRun(exp, 0)
for exp
in sorted(exp_set)[1:]])
114 basf2.B2INFO(f
"Final Boundaries: {payload_boundaries}")
117 chunks_head = payload_boundaries
118 chunks_tail = payload_boundaries[1:] + [ExpRun(inf, inf)]
119 iov_chunks = [list(g)
for k, g
in groupby(sorted(input_iov_set_physics),
120 lambda x: [i
for i, j
in zip(chunks_head, chunks_tail)
if i <= x < j])]
123 input_file_to_iov = reduced_file_to_iov_physics
125 for ichunk, chunk
in enumerate(iov_chunks):
126 first_iov = IoV(chunk[0].exp_low, chunk[0].run_low, -1, -1)
127 last_iov = IoV(chunk[-1].exp_low, chunk[-1].run_low, -1, -1)
128 if last_iov < output_iov:
131 input_files = list(chain.from_iterable([list(g)
for k, g
in groupby(
132 input_file_to_iov,
lambda x: input_file_to_iov[x]
in chunk)
if k]))
134 if len(input_files) < min_files_per_chunk:
135 basf2.B2WARNING(f
"No enough file in sub run chunk [{chunk[0]},{chunk[-1]}]: {len(input_files)},\
136 but {min_files_per_chunk} required!")
139 specific_iov = first_iov
if iCal > 0
else output_iov
140 basf2.B2INFO(f
"Total number of files actually used as input = {len(input_files)} for the output {specific_iov}")
141 cal_name = f
"{ichunk+1}_PXDAnalyticGainCalibration"
143 cal = gain_calibration(
145 gain_method=gain_method,
147 input_files=input_files,
149 for alg
in cal.algorithms:
150 alg.params[
"iov_coverage"] = specific_iov
153 basf2.B2INFO(f
"Dry run on Calibration(name={cal_name})")
162 total_input_files = len(reduced_file_to_iov_physics)
165 fraction_of_input_files = len(cal.input_files) / total_input_files
167 cal.max_collector_jobs = ceil(fraction_of_input_files * total_jobs)
168 basf2.B2INFO(f
"{cal.name} will submit a maximum of {cal.max_collector_jobs} batch jobs")