Belle II Software  release-08-01-10
utils.py
1 
8 
9 import pandas as pd
10 import json
11 from datetime import datetime
12 import os
13 
14 
15 def _receive(socket, filtering=True):
16  """Internal helper function to ask a socket for monitoring and get the answer as JSON"""
17  _, message, _ = socket.recv_multipart()
18  message = json.loads(message.decode())
19 
20  def normalize(value):
21  if isinstance(value, str):
22  return value.strip()
23  else:
24  return value
25 
26  for category, dictionary in message.items():
27  for key, value in dictionary.items():
28  yield f"{category}.{key}", normalize(value)
29 
30 
31 def _get_monitor_table_impl(sockets, show_detail):
32  """Functor for executing the actual monitoring request and returning the JSON"""
33  for socket in sockets.values():
34  socket.send_multipart([b"m", b"", b""])
35 
36  for name, socket in sockets.items():
37  for key, value in _receive(socket):
38  if show_detail or ("[" not in key and "last_measurement" not in key):
39  yield f"{name}.{key}", value
40 
41 
42 def get_monitor_table(sockets, show_detail):
43  """
44  Ask the given sockets for their monitoring JSON and return
45  a dictionary with each answers (the socket address as the key).
46  The additional flag show_detail controls how many details of the returned
47  JSON should be included.
48  """
49  return dict(_get_monitor_table_impl(sockets=sockets, show_detail=show_detail))
50 
51 
52 def show_monitoring(df, clear=False):
53  """
54  Print the monitoring data produced by "get_monitor_table"
55  in a human readable form to the console.
56  """
57  tmp = pd.Series({tuple(key.split(".")): value for key, value in df.items()}).unstack(0)
58  tmp = tmp.fillna("-")
59  pd.set_option("max_rows", len(tmp))
60  if clear:
61  os.system("clear")
62  print(tmp)
63 
64 
65 def normalize_addresses(addresses):
66  """
67  Convert a list of addresses into a normalized format, where
68  each address starts with "tcp://", includes a hostname (if not given)
69  and a port number.
70  Also removed duplicates.
71  Useful when user input is processed.
72  """
73  addresses = ["tcp://localhost:" + address if address.isdigit() else address for address in addresses]
74  addresses = ["tcp://" + address if "tcp://" not in address else address for address in addresses]
75  addresses = set(addresses)
76 
77  return addresses
78 
79 
80 def write_monitoring(df, f):
81  """
82  Using the data produced by "get_monitor_table" dump it
83  to disk in the msgpack data format.
84  You will need to have msgpack installed for this.
85  Adds the current time as an additional column
86  Attention: this is the time of the function call which might or might not
87  correspond to the time the values were extracted.
88  """
89  try:
90  import msgpack
91  except ImportError:
92  raise ValueError("Please install msgpack with pip to use this functionality")
93  df["time"] = str(datetime.now())
94  f.write(msgpack.packb(df, use_bin_type=True))
95 
96 
97 def load_measurement_file(file_name):
98  """
99  Load a measurement data file produced by
100 
101  b2hlt_monitor.py --dat
102 
103  and create a pandas dataframe out of it.
104  You need to have msgpack installed for this.
105  Automatically converts the stored time into a timedelta index
106  with the first measurements defined as 0.
107  See the jupyter notebook on how to use this function.
108  """
109  try:
110  import msgpack
111  except ImportError:
112  raise ValueError("Please install msgpack with pip to use this functionality")
113 
114  with open(file_name, "rb") as f:
115  unpacker = msgpack.Unpacker(f, raw=False)
116  df = pd.DataFrame(list(unpacker))
117  df = df.set_index("time")
118  df.index = pd.to_datetime(df.index)
119  df.index = (df.index - df.index[0]).total_seconds()
120  df.columns = df.columns.map(lambda x: tuple(x.split(".")))
121 
122  return df