14 import hep_ml.gradientboosting
18 def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
20 Create hep_ml classifier and store it in a State object.
22 train_features = list(range(number_of_features))
23 uniform_features = [number_of_features + i
for i
in range(number_of_spectators)]
25 loss = hep_ml.losses.AdaLossFunction()
26 if parameters
is not None and 'uniform_rate' in parameters:
27 loss = hep_ml.losses.BinFlatnessLossFunction(uniform_features=uniform_features, uniform_label=[0, 1],
28 fl_coefficient=parameters[
'uniform_rate'])
29 clf = hep_ml.gradientboosting.UGradientBoostingClassifier(loss=loss, n_estimators=100, subsample=0.5,
30 max_depth=5, train_features=train_features)
34 if __name__ ==
"__main__":
35 from basf2
import conditions, find_file
37 conditions.testing_payloads = [
38 'localdb/database.txt'
41 variables = [
'p',
'pt',
'pz',
'phi',
42 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
'daughter(0, phi)',
43 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
'daughter(1, phi)',
44 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
'daughter(2, phi)',
45 'chiProb',
'dr',
'dz',
'dphi',
46 'daughter(0, dr)',
'daughter(1, dr)',
'daughter(0, dz)',
'daughter(1, dz)',
47 'daughter(0, dphi)',
'daughter(1, dphi)',
48 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
49 'daughter(0, kaonID)',
'daughter(0, pionID)',
'daughter(1, kaonID)',
'daughter(1, pionID)',
50 'daughterAngle(0, 1)',
'daughterAngle(0, 2)',
'daughterAngle(1, 2)',
51 'daughter(2, daughter(0, E))',
'daughter(2, daughter(1, E))',
52 'daughter(2, daughter(0, clusterTiming))',
'daughter(2, daughter(1, clusterTiming))',
53 'daughter(2, daughter(0, clusterE9E25))',
'daughter(2, daughter(1, clusterE9E25))',
54 'daughter(2, daughter(0, minC2TDist))',
'daughter(2, daughter(1, minC2TDist))',
57 variables2 = [
'p',
'pt',
'pz',
'phi',
58 'chiProb',
'dr',
'dz',
'dphi',
59 'daughter(2, chiProb)',
60 'daughter(0, kaonID)',
'daughter(0, pionID)',
'daughter(1, kaonID)',
'daughter(1, pionID)',
61 'daughter(2, daughter(0, E))',
'daughter(2, daughter(1, E))',
62 'daughter(2, daughter(0, clusterTiming))',
'daughter(2, daughter(1, clusterTiming))',
63 'daughter(2, daughter(0, clusterE9E25))',
'daughter(2, daughter(1, clusterE9E25))',
64 'daughter(2, daughter(0, minC2TDist))',
'daughter(2, daughter(1, minC2TDist))']
66 train_file = find_file(
"mva/train_D0toKpipi.root",
"examples")
67 training_data = basf2_mva.vector(train_file)
69 general_options = basf2_mva.GeneralOptions()
70 general_options.m_datafiles = training_data
71 general_options.m_treename =
"tree"
72 general_options.m_variables = basf2_mva.vector(*variables)
74 general_options.m_spectators = basf2_mva.vector(
'daughterInvM(0, 1)',
'daughterInvM(0, 2)')
75 general_options.m_target_variable =
"isSignal"
76 general_options.m_identifier =
"hep_ml_baseline"
78 specific_options = basf2_mva.PythonOptions()
79 specific_options.m_framework =
'hep_ml'
80 specific_options.m_steering_file =
'mva/examples/orthogonal_discriminators/hep_ml_ugboost.py'
81 basf2_mva.teacher(general_options, specific_options)
85 specific_options.m_config = json.dumps({
'uniform_rate': 10.0})
86 general_options.m_identifier =
"hep_ml"
87 basf2_mva.teacher(general_options, specific_options)
89 specific_options = basf2_mva.PythonOptions()
90 general_options.m_identifier =
"hep_ml_feature_drop"
91 specific_options.m_framework =
'hep_ml'
92 specific_options.m_steering_file =
'mva/examples/orthogonal_discriminators/hep_ml_ugboost.py'
93 general_options.m_variables = basf2_mva.vector(*variables2)
94 basf2_mva.teacher(general_options, specific_options)