10 from softwaretrigger
import constants
11 import modularAnalysis
14 from geometry
import check_components
18 def add_online_dqm(path, run_type, dqm_environment, components, dqm_mode, create_hlt_unit_histograms=False):
20 Add DQM plots for a specific run type and dqm environment
24 from daqdqm.collisiondqm
import add_collision_dqm
25 from daqdqm.cosmicdqm
import add_cosmic_dqm
27 if run_type == constants.RunTypes.beam:
28 add_collision_dqm(path, components=components, dqm_environment=dqm_environment,
29 dqm_mode=dqm_mode, create_hlt_unit_histograms=create_hlt_unit_histograms)
30 elif run_type == constants.RunTypes.cosmic:
31 add_cosmic_dqm(path, components=components, dqm_environment=dqm_environment,
32 dqm_mode=dqm_mode, create_hlt_unit_histograms=create_hlt_unit_histograms)
34 basf2.B2FATAL(f
"Run type {run_type} not supported.")
36 if dqm_mode
in [
"dont_care",
"all_events"]:
37 path.add_module(
'DelayDQM', title=dqm_environment, histogramDirectoryName=
'DAQ')
40 def add_hlt_dqm(path, run_type, components, dqm_mode, create_hlt_unit_histograms=False):
42 Add all the DQM modules for HLT to the path
47 dqm_environment=constants.Location.hlt.name,
48 components=components,
49 dqm_mode=dqm_mode.name,
50 create_hlt_unit_histograms=create_hlt_unit_histograms)
51 path.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_DQM_' + dqm_mode.name)
54 def add_expressreco_dqm(path, run_type, components, dqm_mode=constants.DQMModes.dont_care.name):
56 Add all the DQM modules for ExpressReco to the path
58 add_online_dqm(path, run_type=run_type, dqm_environment=constants.Location.expressreco.name, components=components,
62 def add_geometry_if_not_present(path):
64 Add the geometry and gearbox module if it was not already added to the path
66 if 'Gearbox' not in path:
67 path.add_module(
'Gearbox')
69 if 'Geometry' not in path:
70 path.add_module(
'Geometry', useDB=
True)
73 def add_store_only_metadata_path(path):
75 Helper function to create a path which deletes (prunes) everything from the data store except
76 things that are really needed, e.g. the event meta data and the results of the software trigger module.
78 After this path was processed, you can not use the data store content any more to do reconstruction (because
79 it is more or less empty), but can only output it to a (S)ROOT file.
81 path.add_module(
"PruneDataStore", matchEntries=constants.ALWAYS_SAVE_OBJECTS).set_name(
"KeepMetaData")
84 def add_store_only_rawdata_path(path, additonal_store_arrays_to_keep=None):
86 Helper function to create a path which deletes (prunes) everything from the data store except
87 raw objects from the detector and things that are really needed, e.g. the event meta data and the results of the
88 software trigger module.
90 After this path was processed, you can not use the data store content any more to do reconstruction (because
91 it is more or less empty), but can only output it to a (S)ROOT file.
93 entries_to_keep = constants.ALWAYS_SAVE_OBJECTS + constants.RAWDATA_OBJECTS
95 if additonal_store_arrays_to_keep:
96 entries_to_keep += additonal_store_arrays_to_keep
98 path.add_module(
"PruneDataStore", matchEntries=entries_to_keep).set_name(
"KeepRawData")
101 def add_filter_software_trigger(path,
102 store_array_debug_prescale=0,
103 use_random_numbers_for_prescale=True):
105 Add the SoftwareTrigger for the filter cuts to the given path.
107 Only the calculation of the cuts is implemented here - the cut logic has to be done
108 using the module return value.
110 :param path: The path to which the module should be added.
111 :param store_array_debug_prescale: When not 0, store each N events the content of the variables needed for the
112 cut calculations in the data store.
113 :param use_random_numbers_for_prescale: If True, the prescales are applied using randomly generated numbers,
114 otherwise are applied using an internal counter.
115 :return: the software trigger module
117 hlt_cut_module = path.add_module(
"SoftwareTrigger",
118 baseIdentifier=
"filter",
119 preScaleStoreDebugOutputToDataStore=store_array_debug_prescale,
120 useRandomNumbersForPreScale=use_random_numbers_for_prescale)
122 path.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_Filter_Calculation')
124 return hlt_cut_module
127 def add_skim_software_trigger(path, store_array_debug_prescale=0):
129 Add the SoftwareTrigger for the skimming (after the filtering) to the given path.
131 Only the calculation of the cuts is implemented here - the cut logic has to be done
133 :param path: The path to which the module should be added.
134 :param store_array_debug_prescale: When not 0, store each N events the content of the variables needed for the
135 cut calculations in the data store.
136 :return: the software trigger module
149 [[clusterReg == 1 and E > 0.03] or [clusterReg == 2 and E > 0.02] or [clusterReg == 3 and E > 0.03]] and \
150 [abs(clusterTiming) < formula(1.0 * clusterErrorTiming) or E > 0.1] and [clusterE1E9 > 0.3 or E > 0.1]', path=path)
153 vertex.kFit(
'pi0:veryLooseFit', 0.0,
'mass', path=path)
154 D0_Cut =
'1.7 < M < 2.1'
155 D0_Ch = [
'K-:dstSkim pi+:dstSkim',
156 'K-:dstSkim pi+:dstSkim pi0:veryLooseFit',
157 'K-:dstSkim pi+:dstSkim pi-:dstSkim pi+:dstSkim',
158 'K_S0:dstSkim pi+:dstSkim pi-:dstSkim']
160 for chID, channel
in enumerate(D0_Ch):
164 Dst_Cut =
'useCMSFrame(p) > 2.2 and massDifference(0) < 0.16'
167 for chID, channel
in enumerate(D0_Ch):
170 Dst_List.append(
'D*+:ch' + str(chID))
173 bToCharmHLTSkim(path)
175 path.add_module(
"SoftwareTrigger", baseIdentifier=
"skim",
176 preScaleStoreDebugOutputToDataStore=store_array_debug_prescale)
179 path.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_Skim_Calculation')
182 def add_pre_filter_reconstruction(path, run_type, components, **kwargs):
184 Add everything needed to calculation a filter decision and if possible,
185 also do the HLT filtering. This is only possible for beam runs (in the moment).
187 Please note that this function adds the HLT decision, but does not branch
190 import reconstruction
192 check_components(components)
194 if run_type == constants.RunTypes.beam:
197 skipGeometryAdding=
True,
198 components=components,
199 event_abort=hlt_event_abort,
202 elif run_type == constants.RunTypes.cosmic:
204 components=components, **kwargs)
207 basf2.B2FATAL(f
"Run Type {run_type} not supported.")
210 def add_filter_module(path):
212 Add and return a skim module, which has a return value dependent
213 on the final HLT decision.
215 return path.add_module(
"TriggerSkim", triggerLines=[
"software_trigger_cut&all&total_result"])
218 def add_post_filter_reconstruction(path, run_type, components):
220 Add all modules which should run after the HLT decision is taken
221 and only on the accepted events.
222 This includes reconstruction modules not essential
223 to calculate filter decision and then the skim calculation.
225 import reconstruction
227 check_components(components)
229 if run_type == constants.RunTypes.beam:
232 add_skim_software_trigger(path, store_array_debug_prescale=1)
233 elif run_type == constants.RunTypes.cosmic:
234 add_skim_software_trigger(path, store_array_debug_prescale=1)
236 basf2.B2FATAL(f
"Run Type {run_type} not supported.")
239 def hlt_event_abort(module, condition, error_flag):
241 Create a discard path suitable for HLT processing, i.e. set an error flag and
242 keep only the metadata.
249 p.add_module(
"EventErrorFlag", errorFlag=error_flag)
250 add_store_only_metadata_path(p)
251 module.if_value(condition, p, basf2.AfterConditionPath.CONTINUE)
252 if error_flag == ROOT.Belle2.EventMetaData.c_HLTDiscard:
253 p.add_module(
'StatisticsSummary').set_name(
'Sum_HLT_Discard')
def cutAndCopyList(outputListName, inputListName, cut, writeOut=False, path=None)
def reconstructDecay(decayString, cut, dmID=0, writeOut=False, path=None, candidate_limit=None, ignoreIfTooManyCandidates=True, chargeConjugation=True, allowChargeViolation=False)
def copyLists(outputListName, inputListNames, writeOut=False, path=None)
def fillParticleList(decayString, cut, writeOut=False, path=None, enforceFitHypothesis=False, loadPhotonsFromKLM=False)
def add_cosmics_reconstruction(path, components=None, pruneTracks=True, skipGeometryAdding=False, eventTimingExtraction=True, addClusterExpertModules=True, merge_tracks=True, use_second_cdc_hits=False, add_muid_hits=False, reconstruct_cdst=False, posttracking=True, eventt0_combiner_mode="prefer_cdc", legacy_ecl_charged_pid=False)
def add_prefilter_reconstruction(path, components=None, add_modules_for_trigger_calculation=True, skipGeometryAdding=False, trackFitHypotheses=None, use_second_cdc_hits=False, add_muid_hits=False, reconstruct_cdst=None, event_abort=default_event_abort, pxd_filtering_offline=False, append_full_grid_cdc_eventt0=False)
def add_postfilter_reconstruction(path, components=None, pruneTracks=False, addClusterExpertModules=True, reconstruct_cdst=None, legacy_ecl_charged_pid=False)
def stdKshorts(prioritiseV0=True, fitter='TreeFit', path=None, updateAllDaughters=False, writeOut=False)
def stdLambdas(prioritiseV0=True, fitter='TreeFit', path=None, updateAllDaughters=False, writeOut=False)
def kFit(list_name, conf_level, fit_type='vertex', constraint='', daughtersUpdate=False, decay_string='', massConstraint=[], recoilMass=0, smearing=0, path=None)