Source code for stdV0s

#!/usr/bin/env python3

##########################################################################
# basf2 (Belle II Analysis Software Framework)                           #
# Author: The Belle II Collaboration                                     #
#                                                                        #
# See git log for contributors and copyright holders.                    #
# This file is licensed under LGPL-3.0, see LICENSE.md.                  #
##########################################################################

from basf2 import B2ERROR
import modularAnalysis as ma
from stdCharged import stdPi, stdPr
import vertex


[docs]def stdKshorts(prioritiseV0=True, fitter='TreeFit', path=None): """ Load a combined list of the Kshorts list from V0 objects merged with a list of particles combined using the analysis ParticleCombiner module. The ParticleList is named ``K_S0:merged``. A vertex fit is performed and only candidates with an invariant mass in the range :math:`0.450 < M < 0.550~GeV`, and for which the vertex fit did not fail, are kept. The vertex fitter can be selected among ``TreeFit``, ``KFit``, and ``Rave``. Parameters: prioritiseV0 (bool): should the V0 mdst objects be prioritised when merging? fitter (str): vertex fitter name, valid options are ``TreeFit``, ``KFit``, and ``Rave``. path (basf2.Path): the path to load the modules """ # Fill one list from V0 ma.fillParticleList('K_S0:V0 -> pi+ pi-', '', True, path=path) ma.cutAndCopyList('K_S0:V0_MassWindow', 'K_S0:V0', '0.3 < M < 0.7', path=path) # Perform vertex fit and apply tighter mass window if fitter == 'TreeFit': vertex.treeFit('K_S0:V0_MassWindow', conf_level=0.0, path=path) elif fitter == 'KFit': vertex.kFit('K_S0:V0_MassWindow', conf_level=0.0, path=path) elif fitter == 'Rave': vertex.raveFit('K_S0:V0_MassWindow', conf_level=0.0, path=path, silence_warning=True) else: B2ERROR("Valid fitter options for Kshorts are 'TreeFit', 'KFit', and 'Rave'. However, the latter is not recommended.") ma.applyCuts('K_S0:V0_MassWindow', '0.450 < M < 0.550', path=path) # Reconstruct a second list stdPi('all', path=path) # no quality cuts ma.reconstructDecay('K_S0:RD -> pi+:all pi-:all', '0.3 < M < 0.7', 1, True, path=path) # Again perform vertex fit and apply tighter mass window if fitter == 'TreeFit': vertex.treeFit('K_S0:RD', conf_level=0.0, path=path) elif fitter == 'KFit': vertex.kFit('K_S0:RD', conf_level=0.0, path=path) elif fitter == 'Rave': vertex.raveFit('K_S0:RD', conf_level=0.0, path=path, silence_warning=True) ma.applyCuts('K_S0:RD', '0.450 < M < 0.550', path=path) # Create merged list based on provided priority ma.mergeListsWithBestDuplicate('K_S0:merged', ['K_S0:V0_MassWindow', 'K_S0:RD'], variable='particleSource', preferLowest=prioritiseV0, path=path)
[docs]def goodBelleKshort(path): """ Load the Belle goodKshort list. Creates a ParticleList named ``K_S0:legacyGoodKS``. A vertex fit is performed and only candidates that satisfy the :b2:var:`goodBelleKshort` criteria, with an invariant mass in the range :math:`0.468 < M < 0.528~GeV`, and for which the vertex fit did not fail, are kept Parameters: path (basf2.Path): the path to load the modules """ ma.fillParticleList('K_S0:legacyGoodKS -> pi+ pi-', '0.3 < M < 0.7', True, path=path) vertex.kFit('K_S0:legacyGoodKS', conf_level=0.0, path=path) ma.applyCuts('K_S0:legacyGoodKS', '0.468 < M < 0.528 and goodBelleKshort==1', path=path)
[docs]def scaleErrorKshorts(prioritiseV0=True, fitter='TreeFit', scaleFactors_V0=[1.125927, 1.058803, 1.205928, 1.066734, 1.047513], scaleFactorsNoPXD_V0=[1.125927, 1.058803, 1.205928, 1.066734, 1.047513], d0Resolution_V0=[0.001174, 0.000779], z0Resolution_V0=[0.001350, 0.000583], d0MomThr_V0=0.500000, z0MomThr_V0=0.00000, scaleFactors_RD=[1.149631, 1.085547, 1.151704, 1.096434, 1.086659], scaleFactorsNoPXD_RD=[1.149631, 1.085547, 1.151704, 1.096434, 1.086659], d0Resolution_RD=[0.00115328, 0.00134704], z0Resolution_RD=[0.00124327, 0.0013272], d0MomThr_RD=0.500000, z0MomThr_RD=0.500000, path=None): ''' Reconstruct K_S0 applying helix error correction to K_S0 daughters given by ``modularAnalysis.scaleError``. The ParticleList is named ``K_S0:scaled`` Considering the difference of multiple scattering through the beam pipe, different parameter sets are used for K_S0 decaying outside/inside the beam pipe (``K_S0:V0/RD``). Only for TDCPV analysis. @param prioritiseV0 If True K_S0 from V0 object is prioritised over RD when merged. @param fitter Vertex fitter option. Choose from ``TreeFit``, ``KFit`` and ``Rave``. @param scaleFactors_V0 List of five constants to be multiplied to each of helix errors (for tracks with a PXD hit) @param scaleFactorsNoPXD_V0 List of five constants to be multiplied to each of helix errors (for tracks without a PXD hit) @param d0Resolution_V0 List of two parameters, (a [cm], b [cm/(GeV/c)]), defining d0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**1.5))**2 } @param z0Resolution_V0 List of two parameters, (a [cm], b [cm/(GeV/c)]), defining z0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**2.5))**2 } @param d0MomThr_V0 d0 best resolution is kept constant below this momentum @param z0MomThr_V0 z0 best resolution is kept constant below this momentum @param scaleFactors_RD List of five constants to be multiplied to each of helix errors (for tracks with a PXD hit) @param scaleFactorsNoPXD_RD List of five constants to be multiplied to each of helix errors (for tracks without a PXD hit) @param d0Resolution_RD List of two parameters, (a [cm], b [cm/(GeV/c)]), defining d0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**1.5))**2 } @param z0Resolution_RD List of two parameters, (a [cm], b [cm/(GeV/c)]), defining z0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**2.5))**2 } @param d0MomThr_RD d0 best resolution is kept constant below this momentum @param z0MomThr_RD z0 best resolution is kept constant below this momentum ''' from basf2 import register_module # Load K_S0 from V0 and apply helix error correction to V0 daughters ma.fillParticleList('K_S0:V0 -> pi+ pi-', '', True, path=path) scaler_V0 = register_module("HelixErrorScaler") scaler_V0.set_name('ScaleError_' + 'K_S0:V0') scaler_V0.param('inputListName', 'K_S0:V0') scaler_V0.param('outputListName', 'K_S0:V0_scaled') scaler_V0.param('scaleFactors_PXD', scaleFactors_V0) scaler_V0.param('scaleFactors_noPXD', scaleFactorsNoPXD_V0) scaler_V0.param('d0ResolutionParameters', d0Resolution_V0) scaler_V0.param('z0ResolutionParameters', z0Resolution_V0) scaler_V0.param('d0MomentumThreshold', d0MomThr_V0) scaler_V0.param('z0MomentumThreshold', z0MomThr_V0) path.add_module(scaler_V0) ma.applyCuts('K_S0:V0_scaled', '0.3 < M < 0.7', path=path) # Perform vertex fit and apply tighter mass window if fitter == 'TreeFit': vertex.treeFit('K_S0:V0_scaled', conf_level=0.0, path=path) elif fitter == 'KFit': vertex.kFit('K_S0:V0_scaled', conf_level=0.0, path=path) elif fitter == 'Rave': vertex.raveFit('K_S0:V0_scaled', conf_level=0.0, path=path, silence_warning=True) else: B2ERROR("Valid fitter options for Kshorts are 'TreeFit', 'KFit', and 'Rave'. However, the latter is not recommended.") ma.applyCuts('K_S0:V0_scaled', '0.450 < M < 0.550', path=path) # Reconstruct a second list stdPi('all', path=path) ma.scaleError('pi+:scaled', 'pi+:all', scaleFactors=scaleFactors_RD, scaleFactorsNoPXD=scaleFactorsNoPXD_RD, d0Resolution=d0Resolution_RD, z0Resolution=z0Resolution_RD, d0MomThr=d0MomThr_RD, z0MomThr=z0MomThr_RD, path=path) ma.reconstructDecay('K_S0:RD_scaled -> pi+:scaled pi-:scaled', '0.3 < M < 0.7', 1, True, path=path) # Again perform vertex fit and apply tighter mass window if fitter == 'TreeFit': vertex.treeFit('K_S0:RD_scaled', conf_level=0.0, path=path) elif fitter == 'KFit': vertex.kFit('K_S0:RD_scaled', conf_level=0.0, path=path) elif fitter == 'Rave': vertex.raveFit('K_S0:RD_scaled', conf_level=0.0, path=path, silence_warning=True) ma.applyCuts('K_S0:RD_scaled', '0.450 < M < 0.550', path=path) # Create merged list based on provided priority ma.mergeListsWithBestDuplicate('K_S0:scaled', ['K_S0:V0_scaled', 'K_S0:RD_scaled'], variable='particleSource', preferLowest=prioritiseV0, path=path)
[docs]def stdLambdas(prioritiseV0=True, fitter='TreeFit', path=None): """ Load a combined list of the Lambda list from V0 objects merged with a list of particles combined using the analysis ParticleCombiner module. The ParticleList is named ``Lambda0:merged``. A vertex fit is performed and only candidates with an invariant mass in the range :math:`1.10 < M < 1.13~GeV`, and for which the vertex fit did not fail, are kept. The vertex fitter can be selected among ``TreeFit``, ``KFit``, and ``Rave``. Parameters: prioritiseV0 (bool): should the V0 mdst objects be prioritised when merging? fitter (str): vertex fitter name, valid options are ``TreeFit``, ``KFit``, and ``Rave``. path (basf2.Path): the path to load the modules """ # Fill one list from V0 ma.fillParticleList('Lambda0:V0 -> p+ pi-', '', True, path=path) ma.cutAndCopyList('Lambda0:V0_MassWindow', 'Lambda0:V0', '0.9 < M < 1.3', path=path) # Perform vertex fit and apply tighter mass window if fitter == 'TreeFit': vertex.treeFit('Lambda0:V0_MassWindow', conf_level=0.0, path=path) elif fitter == 'KFit': vertex.kFit('Lambda0:V0_MassWindow', conf_level=0.0, path=path) elif fitter == 'Rave': vertex.raveFit('Lambda0:V0_MassWindow', conf_level=0.0, path=path, silence_warning=True) else: B2ERROR("Valid fitter options for Lambdas are 'TreeFit', 'KFit', and 'Rave'. However, the latter is not recommended.") ma.applyCuts('Lambda0:V0_MassWindow', '1.10 < M < 1.13', path=path) # Find V0 duplicate with better vertex fit quality ma.markDuplicate('Lambda0:V0_MassWindow', False, path=path) ma.applyCuts('Lambda0:V0_MassWindow', 'extraInfo(highQualityVertex)', path=path) # Reconstruct a second list stdPi('all', path=path) # no quality cuts stdPr('all', path=path) # no quality cuts ma.reconstructDecay('Lambda0:RD -> p+:all pi-:all', '0.9 < M < 1.3', 1, True, path=path) # Again perform vertex fit and apply tighter mass window if fitter == 'TreeFit': vertex.treeFit('Lambda0:RD', conf_level=0.0, path=path) elif fitter == 'KFit': vertex.kFit('Lambda0:RD', conf_level=0.0, path=path) elif fitter == 'Rave': vertex.raveFit('Lambda0:RD', conf_level=0.0, path=path, silence_warning=True) ma.applyCuts('Lambda0:RD', '1.10 < M < 1.13', path=path) # Find RD duplicate with better vertex fit quality ma.markDuplicate('Lambda0:RD', False, path=path) ma.applyCuts('Lambda0:RD', 'extraInfo(highQualityVertex)', path=path) ma.mergeListsWithBestDuplicate('Lambda0:merged', ['Lambda0:V0_MassWindow', 'Lambda0:RD'], variable='particleSource', preferLowest=prioritiseV0, path=path)