#!/usr/bin/env python3
##########################################################################
# basf2 (Belle II Analysis Software Framework) #
# Author: The Belle II Collaboration #
# #
# See git log for contributors and copyright holders. #
# This file is licensed under LGPL-3.0, see LICENSE.md. #
##########################################################################
from basf2 import B2ERROR
import modularAnalysis as ma
from stdCharged import stdPi, stdPr
import vertex
[docs]def stdKshorts(prioritiseV0=True, fitter='TreeFit', path=None):
"""
Load a combined list of the Kshorts list from V0 objects merged with
a list of particles combined using the analysis ParticleCombiner module.
The ParticleList is named ``K_S0:merged``. A vertex fit is performed and only
candidates with an invariant mass in the range :math:`0.450 < M < 0.550~GeV`,
and for which the vertex fit did not fail, are kept.
The vertex fitter can be selected among ``TreeFit``, ``KFit``, and ``Rave``.
Parameters:
prioritiseV0 (bool): should the V0 mdst objects be prioritised when merging?
fitter (str): vertex fitter name, valid options are ``TreeFit``, ``KFit``, and ``Rave``.
path (basf2.Path): the path to load the modules
"""
# Fill one list from V0
ma.fillParticleList('K_S0:V0 -> pi+ pi-', '', True, path=path)
ma.cutAndCopyList('K_S0:V0_MassWindow', 'K_S0:V0', '0.3 < M < 0.7', path=path)
# Perform vertex fit and apply tighter mass window
if fitter == 'TreeFit':
vertex.treeFit('K_S0:V0_MassWindow', conf_level=0.0, path=path)
elif fitter == 'KFit':
vertex.kFit('K_S0:V0_MassWindow', conf_level=0.0, path=path)
elif fitter == 'Rave':
vertex.raveFit('K_S0:V0_MassWindow', conf_level=0.0, path=path, silence_warning=True)
else:
B2ERROR("Valid fitter options for Kshorts are 'TreeFit', 'KFit', and 'Rave'. However, the latter is not recommended.")
ma.applyCuts('K_S0:V0_MassWindow', '0.450 < M < 0.550', path=path)
# Reconstruct a second list
stdPi('all', path=path) # no quality cuts
ma.reconstructDecay('K_S0:RD -> pi+:all pi-:all', '0.3 < M < 0.7', 1, True, path=path)
# Again perform vertex fit and apply tighter mass window
if fitter == 'TreeFit':
vertex.treeFit('K_S0:RD', conf_level=0.0, path=path)
elif fitter == 'KFit':
vertex.kFit('K_S0:RD', conf_level=0.0, path=path)
elif fitter == 'Rave':
vertex.raveFit('K_S0:RD', conf_level=0.0, path=path, silence_warning=True)
ma.applyCuts('K_S0:RD', '0.450 < M < 0.550', path=path)
# Create merged list based on provided priority
ma.mergeListsWithBestDuplicate('K_S0:merged', ['K_S0:V0_MassWindow', 'K_S0:RD'],
variable='particleSource', preferLowest=prioritiseV0, path=path)
[docs]def goodBelleKshort(path):
"""
Load the Belle goodKshort list. Creates a ParticleList named
``K_S0:legacyGoodKS``. A vertex fit is performed and only candidates that
satisfy the :b2:var:`goodBelleKshort` criteria, with an invariant mass in the range
:math:`0.468 < M < 0.528~GeV`, and for which the vertex fit did not fail, are kept
Parameters:
path (basf2.Path): the path to load the modules
"""
ma.fillParticleList('K_S0:legacyGoodKS -> pi+ pi-', '0.3 < M < 0.7', True, path=path)
vertex.kFit('K_S0:legacyGoodKS', conf_level=0.0, path=path)
ma.applyCuts('K_S0:legacyGoodKS', '0.468 < M < 0.528 and goodBelleKshort==1', path=path)
[docs]def scaleErrorKshorts(prioritiseV0=True, fitter='TreeFit',
scaleFactors_V0=[1.125927, 1.058803, 1.205928, 1.066734, 1.047513],
scaleFactorsNoPXD_V0=[1.125927, 1.058803, 1.205928, 1.066734, 1.047513],
d0Resolution_V0=[0.001174, 0.000779],
z0Resolution_V0=[0.001350, 0.000583],
d0MomThr_V0=0.500000,
z0MomThr_V0=0.00000,
scaleFactors_RD=[1.149631, 1.085547, 1.151704, 1.096434, 1.086659],
scaleFactorsNoPXD_RD=[1.149631, 1.085547, 1.151704, 1.096434, 1.086659],
d0Resolution_RD=[0.00115328, 0.00134704],
z0Resolution_RD=[0.00124327, 0.0013272],
d0MomThr_RD=0.500000,
z0MomThr_RD=0.500000,
path=None):
'''
Reconstruct K_S0 applying helix error correction to K_S0 daughters given by ``modularAnalysis.scaleError``.
The ParticleList is named ``K_S0:scaled``
Considering the difference of multiple scattering through the beam pipe,
different parameter sets are used for K_S0 decaying outside/inside the beam pipe (``K_S0:V0/RD``).
Only for TDCPV analysis.
@param prioritiseV0 If True K_S0 from V0 object is prioritised over RD when merged.
@param fitter Vertex fitter option. Choose from ``TreeFit``, ``KFit`` and ``Rave``.
@param scaleFactors_V0 List of five constants to be multiplied to each of helix errors (for tracks with a PXD hit)
@param scaleFactorsNoPXD_V0 List of five constants to be multiplied to each of helix errors (for tracks without a PXD hit)
@param d0Resolution_V0 List of two parameters, (a [cm], b [cm/(GeV/c)]),
defining d0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**1.5))**2 }
@param z0Resolution_V0 List of two parameters, (a [cm], b [cm/(GeV/c)]),
defining z0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**2.5))**2 }
@param d0MomThr_V0 d0 best resolution is kept constant below this momentum
@param z0MomThr_V0 z0 best resolution is kept constant below this momentum
@param scaleFactors_RD List of five constants to be multiplied to each of helix errors (for tracks with a PXD hit)
@param scaleFactorsNoPXD_RD List of five constants to be multiplied to each of helix errors (for tracks without a PXD hit)
@param d0Resolution_RD List of two parameters, (a [cm], b [cm/(GeV/c)]),
defining d0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**1.5))**2 }
@param z0Resolution_RD List of two parameters, (a [cm], b [cm/(GeV/c)]),
defining z0 best resolution as sqrt{ a**2 + (b / (p*beta*sinTheta**2.5))**2 }
@param d0MomThr_RD d0 best resolution is kept constant below this momentum
@param z0MomThr_RD z0 best resolution is kept constant below this momentum
'''
from basf2 import register_module
# Load K_S0 from V0 and apply helix error correction to V0 daughters
ma.fillParticleList('K_S0:V0 -> pi+ pi-', '', True, path=path)
scaler_V0 = register_module("HelixErrorScaler")
scaler_V0.set_name('ScaleError_' + 'K_S0:V0')
scaler_V0.param('inputListName', 'K_S0:V0')
scaler_V0.param('outputListName', 'K_S0:V0_scaled')
scaler_V0.param('scaleFactors_PXD', scaleFactors_V0)
scaler_V0.param('scaleFactors_noPXD', scaleFactorsNoPXD_V0)
scaler_V0.param('d0ResolutionParameters', d0Resolution_V0)
scaler_V0.param('z0ResolutionParameters', z0Resolution_V0)
scaler_V0.param('d0MomentumThreshold', d0MomThr_V0)
scaler_V0.param('z0MomentumThreshold', z0MomThr_V0)
path.add_module(scaler_V0)
ma.applyCuts('K_S0:V0_scaled', '0.3 < M < 0.7', path=path)
# Perform vertex fit and apply tighter mass window
if fitter == 'TreeFit':
vertex.treeFit('K_S0:V0_scaled', conf_level=0.0, path=path)
elif fitter == 'KFit':
vertex.kFit('K_S0:V0_scaled', conf_level=0.0, path=path)
elif fitter == 'Rave':
vertex.raveFit('K_S0:V0_scaled', conf_level=0.0, path=path, silence_warning=True)
else:
B2ERROR("Valid fitter options for Kshorts are 'TreeFit', 'KFit', and 'Rave'. However, the latter is not recommended.")
ma.applyCuts('K_S0:V0_scaled', '0.450 < M < 0.550', path=path)
# Reconstruct a second list
stdPi('all', path=path)
ma.scaleError('pi+:scaled', 'pi+:all',
scaleFactors=scaleFactors_RD,
scaleFactorsNoPXD=scaleFactorsNoPXD_RD,
d0Resolution=d0Resolution_RD,
z0Resolution=z0Resolution_RD,
d0MomThr=d0MomThr_RD,
z0MomThr=z0MomThr_RD,
path=path)
ma.reconstructDecay('K_S0:RD_scaled -> pi+:scaled pi-:scaled', '0.3 < M < 0.7', 1, True, path=path)
# Again perform vertex fit and apply tighter mass window
if fitter == 'TreeFit':
vertex.treeFit('K_S0:RD_scaled', conf_level=0.0, path=path)
elif fitter == 'KFit':
vertex.kFit('K_S0:RD_scaled', conf_level=0.0, path=path)
elif fitter == 'Rave':
vertex.raveFit('K_S0:RD_scaled', conf_level=0.0, path=path, silence_warning=True)
ma.applyCuts('K_S0:RD_scaled', '0.450 < M < 0.550', path=path)
# Create merged list based on provided priority
ma.mergeListsWithBestDuplicate('K_S0:scaled', ['K_S0:V0_scaled', 'K_S0:RD_scaled'],
variable='particleSource', preferLowest=prioritiseV0, path=path)
[docs]def stdLambdas(prioritiseV0=True, fitter='TreeFit', path=None):
"""
Load a combined list of the Lambda list from V0 objects merged with
a list of particles combined using the analysis ParticleCombiner module.
The ParticleList is named ``Lambda0:merged``. A vertex fit is performed and only
candidates with an invariant mass in the range :math:`1.10 < M < 1.13~GeV`,
and for which the vertex fit did not fail, are kept.
The vertex fitter can be selected among ``TreeFit``, ``KFit``, and ``Rave``.
Parameters:
prioritiseV0 (bool): should the V0 mdst objects be prioritised when merging?
fitter (str): vertex fitter name, valid options are ``TreeFit``, ``KFit``, and ``Rave``.
path (basf2.Path): the path to load the modules
"""
# Fill one list from V0
ma.fillParticleList('Lambda0:V0 -> p+ pi-', '', True, path=path)
ma.cutAndCopyList('Lambda0:V0_MassWindow', 'Lambda0:V0', '0.9 < M < 1.3', path=path)
# Perform vertex fit and apply tighter mass window
if fitter == 'TreeFit':
vertex.treeFit('Lambda0:V0_MassWindow', conf_level=0.0, path=path)
elif fitter == 'KFit':
vertex.kFit('Lambda0:V0_MassWindow', conf_level=0.0, path=path)
elif fitter == 'Rave':
vertex.raveFit('Lambda0:V0_MassWindow', conf_level=0.0, path=path, silence_warning=True)
else:
B2ERROR("Valid fitter options for Lambdas are 'TreeFit', 'KFit', and 'Rave'. However, the latter is not recommended.")
ma.applyCuts('Lambda0:V0_MassWindow', '1.10 < M < 1.13', path=path)
# Find V0 duplicate with better vertex fit quality
ma.markDuplicate('Lambda0:V0_MassWindow', False, path=path)
ma.applyCuts('Lambda0:V0_MassWindow', 'extraInfo(highQualityVertex)', path=path)
# Reconstruct a second list
stdPi('all', path=path) # no quality cuts
stdPr('all', path=path) # no quality cuts
ma.reconstructDecay('Lambda0:RD -> p+:all pi-:all', '0.9 < M < 1.3', 1, True, path=path)
# Again perform vertex fit and apply tighter mass window
if fitter == 'TreeFit':
vertex.treeFit('Lambda0:RD', conf_level=0.0, path=path)
elif fitter == 'KFit':
vertex.kFit('Lambda0:RD', conf_level=0.0, path=path)
elif fitter == 'Rave':
vertex.raveFit('Lambda0:RD', conf_level=0.0, path=path, silence_warning=True)
ma.applyCuts('Lambda0:RD', '1.10 < M < 1.13', path=path)
# Find RD duplicate with better vertex fit quality
ma.markDuplicate('Lambda0:RD', False, path=path)
ma.applyCuts('Lambda0:RD', 'extraInfo(highQualityVertex)', path=path)
ma.mergeListsWithBestDuplicate('Lambda0:merged', ['Lambda0:V0_MassWindow', 'Lambda0:RD'],
variable='particleSource', preferLowest=prioritiseV0, path=path)