13 <input>../GenericB_GENSIMRECtoDST.dst.root</input>
14 <output>Pi0_Validation.root</output>
15 <contact>Mario Merola (mario.merola@na.infn.it)</contact>
17 Check the calibration of the ECL
in the MC by determining the measured pi0 invariant mass.
24from modularAnalysis import cutAndCopyList, inputMdst
25from stdPi0s import stdPi0s
26from validation_tools.metadata import create_validation_histograms
27from validation_tools.metadata import validation_metadata_update
28from variables import variables as vm
30INPUT_FILENAME = "../GenericB_GENSIMRECtoDST.dst.root"
31OUTPUT_FILENAME = "Pi0_Validation.root"
34inputMdst(INPUT_FILENAME, path=main)
36stdPi0s('all', path=main)
37cutAndCopyList('pi0:rec', 'pi0:all', 'daughter(0, E)>0.05 and daughter(1, E)>0.05', path=main)
38cutAndCopyList('pi0:mc', 'pi0:all', 'mcErrors<1', path=main)
40vm.addAlias('Mreco', 'M')
43create_validation_histograms(
44 main, OUTPUT_FILENAME, "pi0:rec",
47 "Mreco", 40, 0.08, 0.18,
48 "#pi^{0} reconstructed candidates, invariant mass",
49 "Eldar Ganiev <eldar.ganiev@desy.de>",
50 r"The $\pi^0$ invariant mass distribution with $E_{\gamma}>0.05\, \text{GeV}$",
51 r"Distribution should be peaking at the nominal $\pi^0$ mass.",
52 "M(#pi^{0}) [GeV/c^{2}]",
"Candidates",
"shifter"
55 description=
r"$\pi^0$ reconstructed mass distribution",
59vm.addAlias(
'Mmc',
'M')
61create_validation_histograms(
62 main, OUTPUT_FILENAME,
"pi0:mc",
65 "Mmc", 40, 0.08, 0.18,
66 "#pi^{0} MC candidates, invariant mass",
67 "Eldar Ganiev <eldar.ganiev@desy.de>",
68 r"The $\pi^0$ invariant mass distribution for truth matched candidates",
69 r"Distribution should be peaking at the nominal $\pi^0$ mass.",
70 "M(#pi^{0}) [GeV/c^{2}]",
"Candidates",
"shifter"
73 description=
r"$\pi^0$ MC mass distribution",
76main.add_module(
'Progress')
78print(basf2.statistics)
81f = ROOT.TFile(OUTPUT_FILENAME)
82Mrecohist = f.Get(
'Mreco')
86mass = ROOT.RooRealVar(
"recomass",
"m_{#gamma#gamma} [GeV/c^{2}]", 0.11, 0.15)
88h_pi0_reco = ROOT.RooDataHist(
"h_pi0_reco",
"h_pi0_reco", ROOT.RooArgList(mass), Mrecohist)
89h_pi0_mc = ROOT.RooDataHist(
"h_pi0_mc",
"h_pi0_mc", ROOT.RooArgList(mass), Mmchist)
93mean = ROOT.RooRealVar(
"mean",
"mean", 0.125, 0.11, 0.15)
94sig1 = ROOT.RooRealVar(
"#sigma",
"sig", 0.007, 0.002, 0.1)
95gau1 = ROOT.RooGaussian(
"gau1",
"gau1", mass, mean, sig1)
97alphacb = ROOT.RooRealVar(
"alphacb",
"alpha", 1.5, 0.1, 1.9)
98ncb = ROOT.RooRealVar(
"ncb",
"n", 8)
99sigcb = ROOT.RooCBShape(
"sigcb",
"sigcb", mass, mean, sig1, alphacb, ncb)
102b1 = ROOT.RooRealVar(
"b1",
"b1", 0.1, -1, 1)
103a1 = ROOT.RooRealVar(
"a1",
"a1", 0.1, -1, 1)
104bList = ROOT.RooArgList(a1, b1)
105bkg = ROOT.RooChebychev(
"bkg",
"bkg", mass, bList)
108nsig = ROOT.RooRealVar(
"nsig",
"nsig", 3000, 0, 1000000)
109nbkg = ROOT.RooRealVar(
"nbkg",
"nbkg", 12000, 0, 1000000)
112totalPdf = ROOT.RooAddPdf(
"totalpdf",
"", ROOT.RooArgList(gau1, bkg), ROOT.RooArgList(nsig, nbkg))
115output = ROOT.TFile(
"Pi0_Validation_ntuple.root",
"recreate")
118outputNtuple = ROOT.TNtuple(
120 "Pi0 mass fit results",
121 "mean:meanerror:width:widtherror:mean_MC:meanerror_MC:width_MC:widtherror_MC")
124ROOT.gROOT.SetBatch(
True)
125canvas = ROOT.TCanvas(
"canvas",
"pi0 mass fit", 1000, 600)
130totalPdf.fitTo(h_pi0_reco, ROOT.RooFit.Extended(
True), ROOT.RooFit.Minimizer(
"Minuit2",
"Migrad"))
132h_pi0_reco.plotOn(frame1, ROOT.RooFit.Name(
"Hist"))
133frame1.SetMaximum(frame1.GetMaximum())
134totalPdf.plotOn(frame1, ROOT.RooFit.Name(
"curve"))
135totalPdf.plotOn(frame1, ROOT.RooFit.Components(
"gau1"), ROOT.RooFit.LineStyle(ROOT.kDashed), ROOT.RooFit.LineColor(ROOT.kRed))
136totalPdf.plotOn(frame1, ROOT.RooFit.Components(
"bkg"), ROOT.RooFit.LineStyle(3), ROOT.RooFit.LineColor(ROOT.kBlue))
137frame1.SetMaximum(Mrecohist.GetMaximum() * 1.5)
138frame1.GetXaxis().SetTitleOffset(1.4)
139frame1.GetYaxis().SetTitleOffset(1.5)
140meanval = mean.getVal()
141meanerror = mean.getError()
143widtherror = sig1.getError()
158bkg = ROOT.RooChebychev(
"bkg1",
"bkg", mass, a1)
159totalPdf = ROOT.RooAddPdf(
"totalpdfMC",
"", ROOT.RooArgList(gau1, bkg), ROOT.RooArgList(nsig, nbkg))
162totalPdf.fitTo(h_pi0_mc, ROOT.RooFit.Extended(
True), ROOT.RooFit.Minimizer(
"Minuit2",
"Migrad"))
164h_pi0_mc.plotOn(frame2, ROOT.RooFit.Name(
"Hist"))
165frame2.SetMaximum(frame2.GetMaximum())
166totalPdf.plotOn(frame2, ROOT.RooFit.Name(
"curve"))
167totalPdf.plotOn(frame2, ROOT.RooFit.Components(
"gau1"), ROOT.RooFit.LineStyle(ROOT.kDashed), ROOT.RooFit.LineColor(ROOT.kRed))
168totalPdf.plotOn(frame2, ROOT.RooFit.Components(
"bkg1"), ROOT.RooFit.LineStyle(3), ROOT.RooFit.LineColor(ROOT.kBlue))
169frame2.SetMaximum(Mmchist.GetMaximum() * 1.5)
170frame2.GetXaxis().SetTitleOffset(1.4)
171frame2.GetYaxis().SetTitleOffset(1.5)
172meanval_mc = mean.getVal()
173meanerror_mc = mean.getError()
174width_mc = sig1.getVal()
175widtherror_mc = sig1.getError()
180outputNtuple.Fill(meanval, meanerror, width, widtherror, meanval_mc, meanerror_mc, width_mc, widtherror_mc)
184validation_metadata_update(
187 title=
"Pi0 mass fit results",
188 contact=
"eldar.ganiev@desy.de",
189 description=
"Fit to the invariant mass of the reconstructed and truth matched pi0s",
190 check=
"Consistent numerical fit results. Stable mean and width.",
191 metaoptions=
"shifter")