Belle II Software development
EDepInGas.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <cdc/modules/cdcDigitizer/EDepInGas.h>
10#include <framework/gearbox/Unit.h>
11#include <framework/logging/Logger.h>
12
13#include <TDatabasePDG.h>
14#include <TRandom.h>
15//#include <iostream>
16
17using namespace std;
18using namespace Belle2;
19using namespace CDC;
20
22
24{
25 if (!m_pntr) {
26 m_pntr = new EDepInGas();
28 }
29 return *m_pntr;
30}
31
33
35
37{
38// gas
39 const double zHe = 2;
40 const double aHe = 4.003;
41 double fHe = 0.1108;
42
43 const double zC = 6;
44 const double aC = 12.011;
45 double fC = 0.2223;
46
47 const double zH = 1;
48 const double aH = 1.008;
49 double fH = 0.6669;
50
51 double f = fHe + fC + fH;
52 fHe /= f;
53 fC /= f;
54 fH /= f;
55 m_z1 = fHe * zHe + fC * zC + fH * zH;
56 m_a1 = fHe * aHe + fC * aC + fH * aH;
57 m_i1 = 49.229;
58 m_rho1 = 0.703e-3;
59 // B2DEBUG(m_dbg, m_z1 <<" "<< m_a1 <<" "<< m_i1 <<" "<< m_rho1*m_z1/m_a1);
60
61 // wire
62 const double zW = 74;
63 const double aW = 183.842;
64 double fW = 0.0198;
65
66 const double zAl = 13;
67 const double aAl = 26.982;
68 double fAl = 0.9802;
69
70 f = fW + fAl;
71 fW /= f;
72 fAl /= f;
73 m_z2 = fW * zW + fAl * zAl;
74 m_a2 = fW * aW + fAl * aAl;
75 m_i2 = 193.301;
76 m_rho2 = 0.419e-3;
77 // B2DEBUG(m_dbg, m_z2 <<" "<< m_a2 <<" "<< m_i2 <<" "<< m_rho2*m_z2/m_a2);
78
79 fHe = 0.01031;
80 fC = 0.02068;
81 fH = 0.06204;
82 fW = 0.0014;
83 fAl = 0.0684;
84 f = fHe + fC + fH + fW + fAl;
85 fHe /= f;
86 fC /= f;
87 fH /= f;
88 fW /= f;
89 fAl /= f;
90 m_z0 = fHe * zHe + fC * zC + fH * zH + fW * zW + fAl * zAl;
91 m_a0 = fHe * aHe + fC * aC + fH * aH + fW * aW + fAl * aAl;
92 m_i0 = 76.693;
93 // m_rho0 = m_rho1 + m_rho2;
94 m_rho0 = 1.121e-3;
95
96 //Define coefficients of density correction term
97 m_ak1[0][0] = 10.065;
98 m_ak1[0][1] = -13.63;
99 m_ak1[1][0] = 4.1334;
100 m_ak1[1][1] = -12.4;
101 m_ak1[2][0] = 0.8135;
102 m_ak1[2][1] = -11.33;
103 m_ak1[3][0] = 0.00402;
104 m_ak1[3][1] = -10.36;
105 m_ak1[4][0] = - 1.7564;
106 m_ak1[4][1] = - 9.611;
107 m_ak1[5][0] = - 1.5065;
108 m_ak1[5][1] = - 8.6753;
109
110 m_bk1[0][0] = - 8.5619;
111 m_bk1[0][1] = 4.6;
112 m_bk1[1][0] = - 4.5857;
113 m_bk1[1][1] = 4.6;
114 m_bk1[2][0] = - 2.1447;
115 m_bk1[2][1] = 4.6;
116 m_bk1[3][0] = - 1.1582;
117 m_bk1[3][1] = 4.6;
118 m_bk1[4][0] = 0.67256;
119 m_bk1[4][1] = 4.6;
120 m_bk1[5][0] = 1.0156;
121 m_bk1[5][1] = 4.6;
122
123 m_ck1[0][0] = 1.82804;
124 m_ck1[0][1] = 0.0;
125 m_ck1[1][0] = 1.27579;
126 m_ck1[1][1] = 0.0;
127 m_ck1[2][0] = 0.93676;
128 m_ck1[2][1] = 0.0;
129 m_ck1[3][0] = 0.79975;
130 m_ck1[3][1] = 0.0;
131 m_ck1[4][0] = 0.49093;
132 m_ck1[4][1] = 0.0;
133 m_ck1[5][0] = 0.44805;
134 m_ck1[5][1] = 0.0;
135}
136
137double EDepInGas::getEDepInGas(int mode, int pdg, double mom, double dx, double e3) const
138{
139 double xi1 = m_rho1 * (m_z1 / m_a1);
140 double xi2 = m_rho2 * (m_z2 / m_a2);
141 // B2DEBUG(m_dbg, (xi1+xi2)/xi1 <<" "<< e3);
142 if (mode == 0) return e3 * xi1 / (xi1 + xi2);
143
144 static TDatabasePDG* ptrTDatabasePDG = TDatabasePDG::Instance();
145 const double mass = ptrTDatabasePDG->GetParticle(pdg)->Mass();
146 const double chrg = fabs(ptrTDatabasePDG->GetParticle(pdg)->Charge() / 3);
147
148 const double me1 = getMostProbabEDep(mom, mass, chrg, dx, m_z1, m_a1, m_i1, m_rho1);
149 if (mode == 2) {
150 const double me0 = getMostProbabEDep(mom, mass, chrg, dx, m_z0, m_a0, m_i0, m_rho0);
151 return e3 * me1 / me0;
152 }
153 const double me2 = getMostProbabEDep(mom, mass, chrg, dx, m_z2, m_a2, m_i2, m_rho2);
154 if (mode == 1) return e3 * me1 / (me1 + me2);
155
156 // extract energy deposit (e1) based on probab., L(e1)*L(e3-e1),
157 // where L is the analytic approx. of Landau dist.
158 // find lm1 which maximizes probability
159 const double mom2 = mom * mom;
160 const double beta2 = mom2 / (mass * mass + mom2);
161 const double buf = 0.1535e-3 * dx * chrg * chrg / beta2;
162 xi1 *= buf;
163 xi2 *= buf;
164 const double xi1i = 1 / xi1;
165 const double xi2i = 1 / xi2;
166 const double lm1min = -me1 * xi1i;
167 const double lm1max = (e3 - me1) * xi1i;
168 double lm1 = (e3 * me1 / (me1 + me2) - me1) * xi1i; // initial guess
169 lm1 = min(lm1, lm1max);
170 lm1 = max(lm1, lm1min);
171 // double edm = 1;
172 int itry = 0;
173 // B2DEBUG(m_dbg, "e3,me1,me2,xi1i=" << e3 <<" "<< me1 <<" "<< me2 <<" "<< xi1i);
174 // B2DEBUG(m_dbg, "lm1min,lm1max,lm1=" << lm1min <<" "<< lm1max <<" "<< lm1);
175 const double lm2b = (e3 - me1 - me2) * xi2i;
176 const double r = xi1 * xi2i;
177 double deltal = 0;
178 double lm1old = lm1;
179 while (itry <= 2 || fabs(lm1 - lm1old) > 0.001) {
180 ++itry;
181 lm1old = lm1;
182 if (itry > 50) {
183 // B2DEBUG(m_dbg, "itry > 50" << "itry,lm1min,lm1max,lm1,edm=" << itry <<" "<< lm1min <<" "<< lm1max <<" "<< lm1);
184 break;
185 }
186 lm1 -= deltal;
187 lm1 = max(lm1min, lm1);
188 lm1 = min(lm1max, lm1);
189 double lm2 = lm2b - r * lm1;
190 double emlm1 = exp(-lm1);
191 double emlm2 = exp(-lm2);
192 double dldlm1 = 1 - emlm1 - r + r * emlm2;
193 double dl2dlm12 = emlm1 + r * r * emlm2;
194 deltal = dldlm1 / dl2dlm12;
195 // edm = dldlm1 * deltal; //drop 0.5* for speed up
196 }
197
198 if (mode == 3) return xi1 * lm1 + me1;
199
200 double lm2 = lm2b - r * lm1;
201 double lmin = 0.5 * (lm1 + lm2 + exp(-lm1) + exp(-lm2));
202 const double ymax = exp(-lmin);
203 // if (ymax < 1.e-10) return e3*me1/(me1+me2);
204
205 // generate e1 according to probab.
206 const double lm1w = lm1max - lm1min;
207 double y = 10;
208 double p = 1;
209 int jtry = 0;
210 double urndm[2];
211 while (y > p) {
212 ++jtry;
213 if (jtry > 500) {
214 // B2DEBUG(m_dbg, "jtry > 500" <<"ymax" << ymax);
215 lm1 = (e3 * me1 / (me1 + me2) - me1) * xi1i;
216 break;
217 }
218 gRandom->RndmArray(2, urndm);
219 lm1 = lm1min + lm1w * urndm[0];
220 lm2 = lm2b - r * lm1;
221 double l = 0.5 * (lm1 + lm2 + exp(-lm1) + exp(-lm2));
222 p = exp(-l);
223 y = ymax * urndm[1];
224 }
225
226 return xi1 * lm1 + me1;
227}
228
229double EDepInGas::getMostProbabEDep(double p, double mass, double zi, double dx, double Z,
230 double A, double I, double rho) const
231{
232// Calculate most probable energy deposit in GeV.
233// Ref. J.Va'vra et al., NIM 203 (1982) 109.
234// ----------------------------------------------------------------------
235// <Input>
236// p : total momentum (GeV)
237// mass : mass of particle (GeV)
238// zi : charge of particle (e)
239// dx : thickness of gas (cm)
240// Z : atomic no. of gas
241// A : atomic weight of gas
242// I : mean ionization potential of gas (eV)
243// rho : density of gas (g/cm**3)
244// ----------------------------------------------------------------------
245 const double psq = p * p;
246 const double masq = mass * mass;
247 const double tote = psq + masq;
248 const double beta2 = psq / tote;
249 const double bgam2 = psq / masq;
250 const double gamma = sqrt(tote) / mass;
251 const double alft = 0.1535e6 * rho * dx * Z / A;
252 const double k = log(m_massE * alft / I / I) + 0.891;
253 const double k1 = k - log(dx);
254 const double alngam = log(gamma);
255 const double alggam = log10(gamma);
256 // calculate density correction term
257 int irgn = 0;
258 double aa, bb, cc;
259 if (k1 < 6.) {
260 if (alggam > 3.6) irgn = 1;
261 aa = (m_ak1[1][irgn] - m_ak1[0][irgn]) * (6. - k1) + m_ak1[0][irgn];
262 bb = (m_bk1[1][irgn] - m_bk1[0][irgn]) * (6. - k1) + m_bk1[0][irgn];
263 cc = (m_ck1[1][irgn] - m_ck1[0][irgn]) * (6. - k1) + m_ck1[0][irgn];
264 } else if (k1 < 7.) {
265 if (alggam > 3.6) irgn = 1;
266 aa = (m_ak1[1][irgn] - m_ak1[0][irgn]) * (k1 - 6.) + m_ak1[0][irgn];
267 bb = (m_bk1[1][irgn] - m_bk1[0][irgn]) * (k1 - 6.) + m_bk1[0][irgn];
268 cc = (m_ck1[1][irgn] - m_ck1[0][irgn]) * (k1 - 6.) + m_ck1[0][irgn];
269 } else if (k1 < 8.) {
270 if (alggam > 3.6) irgn = 1;
271 aa = (m_ak1[2][irgn] - m_ak1[1][irgn]) * (k1 - 7.) + m_ak1[1][irgn];
272 bb = (m_bk1[2][irgn] - m_bk1[1][irgn]) * (k1 - 7.) + m_bk1[1][irgn];
273 cc = (m_ck1[2][irgn] - m_ck1[1][irgn]) * (k1 - 7.) + m_ck1[1][irgn];
274 } else if (k1 < 9.) {
275 if (alggam > 3.6) irgn = 1;
276 aa = (m_ak1[3][irgn] - m_ak1[2][irgn]) * (k1 - 8.) + m_ak1[2][irgn];
277 bb = (m_bk1[3][irgn] - m_bk1[2][irgn]) * (k1 - 8.) + m_bk1[2][irgn];
278 cc = (m_ck1[3][irgn] - m_ck1[2][irgn]) * (k1 - 8.) + m_ck1[2][irgn];
279 } else if (k1 < 10.) {
280 if (alggam > 3.6) irgn = 1;
281 aa = (m_ak1[4][irgn] - m_ak1[3][irgn]) * (k1 - 9.) + m_ak1[3][irgn];
282 bb = (m_bk1[4][irgn] - m_bk1[3][irgn]) * (k1 - 9.) + m_bk1[3][irgn];
283 cc = (m_ck1[4][irgn] - m_ck1[3][irgn]) * (k1 - 9.) + m_ck1[3][irgn];
284 } else if (k1 < 11.) {
285 if (alggam > 4.0) irgn = 1;
286 aa = (m_ak1[5][irgn] - m_ak1[4][irgn]) * (k1 - 10.) + m_ak1[4][irgn];
287 bb = (m_bk1[5][irgn] - m_bk1[4][irgn]) * (k1 - 10.) + m_bk1[4][irgn];
288 cc = (m_ck1[5][irgn] - m_ck1[4][irgn]) * (k1 - 10.) + m_ck1[4][irgn];
289 } else {
290 if (alggam > 4.0) irgn = 1;
291 aa = (m_ak1[5][irgn] - m_ak1[4][irgn]) * (k1 - 11.) + m_ak1[5][irgn];
292 bb = (m_bk1[5][irgn] - m_bk1[4][irgn]) * (k1 - 11.) + m_bk1[5][irgn];
293 cc = (m_ck1[5][irgn] - m_ck1[4][irgn]) * (k1 - 11.) + m_ck1[5][irgn];
294 }
295
296 double delta = aa + alggam * (bb + cc * alggam);
297 delta = max(delta, 0.);
298 delta = min(delta, fabs(log(bgam2)));
299
300 double val = zi * zi * alft * (k + 2 * alngam - beta2 - delta) / beta2;
301 val = max(val, 0.);
302 val *= Unit::eV;
303 return val;
304}
The Class for Energy deposit in the gas.
Definition: EDepInGas.h:20
double m_i1
I of He-C2H6 gas.
Definition: EDepInGas.h:71
double m_i0
I of wire+gas.
Definition: EDepInGas.h:81
EDepInGas()
Singleton class.
Definition: EDepInGas.cc:32
void initialize()
Initialize theclass.
Definition: EDepInGas.cc:36
virtual ~EDepInGas()
Destructor.
Definition: EDepInGas.cc:34
static EDepInGas * m_pntr
Pointer that saves the instance of this class.
Definition: EDepInGas.h:89
double m_z1
Z of He-C2H6 gas.
Definition: EDepInGas.h:69
double m_i2
I of "wire gas".
Definition: EDepInGas.h:76
double m_bk1[6][2]
coeffs b for density effect
Definition: EDepInGas.h:86
double m_ak1[6][2]
coeffs a for density effect
Definition: EDepInGas.h:85
double m_rho0
rho of wire+gas
Definition: EDepInGas.h:82
static EDepInGas & getInstance()
Static method to get a reference to the EDepInGas instance.
Definition: EDepInGas.cc:23
double m_rho1
rho of He-C2H6 gas
Definition: EDepInGas.h:72
const double m_massE
electron mass
Definition: EDepInGas.h:84
double m_rho2
rho of "wire gas"
Definition: EDepInGas.h:77
double getEDepInGas(int mode, int pdg, double p, double dx, double e3) const
Return the energy deosite in the gas.
Definition: EDepInGas.cc:137
double m_a1
A of He-C2H6 gas.
Definition: EDepInGas.h:70
double m_z2
Z of "wire gas".
Definition: EDepInGas.h:74
double m_ck1[6][2]
coeffs c for density effect
Definition: EDepInGas.h:87
double m_z0
Z of wire+gas.
Definition: EDepInGas.h:79
double m_a0
A of wire+gas.
Definition: EDepInGas.h:80
double getMostProbabEDep(double p, double mass, double zi, double dx, double z, double a, double i, double rho) const
Return the energy deosite in the material.
Definition: EDepInGas.cc:229
double m_a2
A of "wire gas".
Definition: EDepInGas.h:75
static const double eV
[electronvolt]
Definition: Unit.h:112
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
Abstract base class for different kinds of events.
STL namespace.