10Airflow script to perform BoostVector calibration.
13from prompt
import CalibrationSettings, INPUT_DATA_FILTERS
14from prompt.calibrations.caf_beamspot
import settings
as beamspot
16from basf2
import get_file_metadata, B2WARNING
18import reconstruction
as re
22settings = CalibrationSettings(
23 name=
"BoostVector Calibrations",
24 expert_username=
"zlebcr",
26 input_data_formats=[
"cdst"],
27 input_data_names=[
"mumu_tight_or_highm_calib"],
29 "mumu_tight_or_highm_calib": [
30 INPUT_DATA_FILTERS[
"Data Tag"][
"mumu_tight_or_highm_calib"],
31 INPUT_DATA_FILTERS[
"Run Type"][
"physics"],
32 INPUT_DATA_FILTERS[
"Data Quality Tag"][
"Good Or Recoverable"],
33 INPUT_DATA_FILTERS[
"Magnet"][
"On"]]},
35 "outerLoss":
"pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
36 "innerLoss":
"pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
38 depends_on=[beamspot])
43def is_cDST_file(fName):
44 """ Check if the file is cDST based on the metadata """
46 metaData = get_file_metadata(fName)
47 description = metaData.getDataDescription()
50 if 'dataLevel' not in description:
51 B2WARNING(
'The cdst/mdst info is not stored in file metadata')
52 return (
'cdst' in os.path.basename(fName))
54 return (description[
'dataLevel'] ==
'cdst')
57def get_calibrations(input_data, **kwargs):
60 input_data (dict): Should contain every name from the
'input_data_names' variable
as a key.
61 Each value
is a dictionary
with {
"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful
for
62 assigning to calibration.files_to_iov
64 **kwargs: Configuration options to be sent
in. Since this may change we use kwargs
as a way to help prevent
65 backwards compatibility problems. But you could use the correct arguments
in b2caf-prompt-run
for this
66 release explicitly
if you want to.
68 Currently only kwargs[
"output_iov"]
is used. This
is the output IoV range that your payloads should
69 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
72 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
79 file_to_iov_physics = input_data[
"mumu_tight_or_highm_calib"]
84 max_files_per_run = 1000000
90 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics, max_files_per_run)
91 input_files_physics = list(reduced_file_to_iov_physics.keys())
92 basf2.B2INFO(f
"Total number of files actually used as input = {len(input_files_physics)}")
94 isCDST = is_cDST_file(input_files_physics[0])
if len(input_files_physics) > 0
else True
98 requested_iov = kwargs.get(
"requested_iov",
None)
100 from caf.utils
import IoV
102 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
107 from ROOT
import Belle2
108 from ROOT.Belle2
import BoostVectorAlgorithm
109 from basf2
import create_path, register_module
110 import modularAnalysis
as ana
116 from caf.framework
import Calibration
117 from caf.strategies
import SingleIOV
120 rec_path_1 = create_path()
122 rec_path_1.add_module(
"RootInput", branchNames=ALWAYS_SAVE_OBJECTS + RAWDATA_OBJECTS)
123 rd.add_unpackers(rec_path_1)
124 re.add_reconstruction(rec_path_1)
126 minPXDhits = kwargs[
'expert_config'][
'minPXDhits']
127 muSelection =
'[p>1.0]'
128 muSelection +=
' and abs(dz)<2.0 and abs(dr)<0.5'
129 muSelection += f
' and nPXDHits >= {minPXDhits} and nSVDHits >= 8 and nCDCHits >= 20'
130 ana.fillParticleList(
'mu+:BV', muSelection, path=rec_path_1)
131 ana.reconstructDecay(
'Upsilon(4S):BV -> mu+:BV mu-:BV',
'9.5<M<11.5', path=rec_path_1)
132 vertex.treeFit(
'Upsilon(4S):BV', updateAllDaughters=
True, ipConstraint=
True, path=rec_path_1)
134 collector_bv = register_module(
'BoostVectorCollector', Y4SPListName=
'Upsilon(4S):BV')
135 algorithm_bv = BoostVectorAlgorithm()
136 algorithm_bv.setOuterLoss(kwargs[
'expert_config'][
'outerLoss'])
137 algorithm_bv.setInnerLoss(kwargs[
'expert_config'][
'innerLoss'])
140 collector=collector_bv,
141 algorithms=algorithm_bv,
142 input_files=input_files_physics,
143 pre_collector_path=rec_path_1)
145 calibration_bv.strategies = SingleIOV
149 for algorithm
in calibration_bv.algorithms:
150 algorithm.params = {
"iov_coverage": output_iov}
156 return [calibration_bv]
def treeFit(list_name, conf_level=0.001, massConstraint=[], ipConstraint=False, updateAllDaughters=False, massConstraintDecayString='', massConstraintMassValues=[], customOriginConstraint=False, customOriginVertex=[0.001, 0, 0.0116], customOriginCovariance=[0.0048, 0, 0, 0, 0.003567, 0, 0, 0, 0.0400], originDimension=3, treatAsInvisible='', ignoreFromVertexFit='', path=None)