Belle II Software development
caf_boostvector.py
1
8
9"""
10Airflow script to perform BoostVector calibration.
11"""
12
13from prompt import CalibrationSettings, INPUT_DATA_FILTERS
14from prompt.calibrations.caf_beamspot import settings as beamspot
15
16
17settings = CalibrationSettings(
18 name="BoostVector Calibrations",
19 expert_username="zlebcr",
20 description=__doc__,
21 input_data_formats=["cdst"],
22 input_data_names=["mumu_tight_or_highm_calib"],
23 input_data_filters={
24 "mumu_tight_or_highm_calib": [
25 INPUT_DATA_FILTERS["Data Tag"]["mumu_tight_or_highm_calib"],
26 INPUT_DATA_FILTERS["Run Type"]["physics"],
27 INPUT_DATA_FILTERS["Data Quality Tag"]["Good Or Recoverable"],
28 INPUT_DATA_FILTERS["Magnet"]["On"]]},
29 expert_config={
30 "outerLoss": "pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
31 "innerLoss": "pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)"},
32 depends_on=[beamspot])
33
34
35
36
37def get_calibrations(input_data, **kwargs):
38 """
39 Parameters:
40 input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
41 Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
42 assigning to calibration.files_to_iov
43
44 **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
45 backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
46 release explicitly if you want to.
47
48 Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
49 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
50
51 Returns:
52 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
53 """
54 import basf2
55 # Set up config options
56
57 # In this script we want to use one sources of input data.
58 # Get the input files from the input_data variable
59 file_to_iov_physics = input_data["mumu_tight_or_highm_calib"]
60
61 # We might have requested an enormous amount of data across a run range.
62 # There's a LOT more files than runs!
63 # Lets set some limits because this calibration doesn't need that much to run.
64 max_files_per_run = 1000000
65
66 # We filter out any more than 100 files per run. The input data files are sorted alphabetically by b2caf-prompt-run
67 # already. This procedure respects that ordering
68 from prompt.utils import filter_by_max_files_per_run
69
70 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics, max_files_per_run)
71 input_files_physics = list(reduced_file_to_iov_physics.keys())
72 basf2.B2INFO(f"Total number of files actually used as input = {len(input_files_physics)}")
73
74 # Get the overall IoV we our process should cover. Includes the end values that we may want to ignore since our output
75 # IoV should be open ended. We could also use this as part of the input data selection in some way.
76 requested_iov = kwargs.get("requested_iov", None)
77
78 from caf.utils import IoV
79 # The actual value our output IoV payload should have. Notice that we've set it open ended.
80 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
81
82
84
85 from ROOT import Belle2 # noqa: make the Belle2 namespace available
86 from ROOT.Belle2 import BoostVectorAlgorithm
87 from basf2 import create_path, register_module
88 import modularAnalysis as ana
89 import vertex
90
91
93
94 from caf.framework import Calibration
95 from caf.strategies import SingleIOV
96 from reconstruction import prepare_cdst_analysis
97
98 # module to be run prior the collector
99 rec_path_1 = create_path()
100 prepare_cdst_analysis(path=rec_path_1, components=['CDC', 'ECL', 'KLM'])
101
102 muSelection = '[p>1.0]'
103 muSelection += ' and abs(dz)<2.0 and abs(dr)<0.5'
104 muSelection += ' and nPXDHits >=1 and nSVDHits >= 8 and nCDCHits >= 20'
105 ana.fillParticleList('mu+:BV', muSelection, path=rec_path_1)
106 ana.reconstructDecay('Upsilon(4S):BV -> mu+:BV mu-:BV', '9.5<M<11.5', path=rec_path_1)
107 vertex.treeFit('Upsilon(4S):BV', updateAllDaughters=True, ipConstraint=True, path=rec_path_1)
108
109 collector_bv = register_module('BoostVectorCollector', Y4SPListName='Upsilon(4S):BV')
110 algorithm_bv = BoostVectorAlgorithm()
111 algorithm_bv.setOuterLoss(kwargs['expert_config']['outerLoss'])
112 algorithm_bv.setInnerLoss(kwargs['expert_config']['innerLoss'])
113
114 calibration_bv = Calibration('BoostVector',
115 collector=collector_bv,
116 algorithms=algorithm_bv,
117 input_files=input_files_physics,
118 pre_collector_path=rec_path_1)
119
120 calibration_bv.strategies = SingleIOV
121
122 # Do this for the default AlgorithmStrategy to force the output payload IoV
123 # It may be different if you are using another strategy like SequentialRunByRun
124 for algorithm in calibration_bv.algorithms:
125 algorithm.params = {"iov_coverage": output_iov}
126
127 # Most other options like database chain and backend args will be overwritten by b2caf-prompt-run.
128 # So we don't bother setting them.
129
130 # You must return all calibrations you want to run in the prompt process, even if it's only one
131 return [calibration_bv]
132
133
def treeFit(list_name, conf_level=0.001, massConstraint=[], ipConstraint=False, updateAllDaughters=False, customOriginConstraint=False, customOriginVertex=[0.001, 0, 0.0116], customOriginCovariance=[0.0048, 0, 0, 0, 0.003567, 0, 0, 0, 0.0400], originDimension=3, treatAsInvisible='', ignoreFromVertexFit='', path=None)
Definition: vertex.py:239