Belle II Software development
caf_boostvector.py
1
8
9"""
10Airflow script to perform BoostVector calibration.
11"""
12
13from prompt import CalibrationSettings, INPUT_DATA_FILTERS
14from prompt.calibrations.caf_beamspot import settings as beamspot
15from softwaretrigger.constants import ALWAYS_SAVE_OBJECTS, RAWDATA_OBJECTS
16from basf2 import get_file_metadata, B2WARNING
17import rawdata as rd
18import reconstruction as re
19import os
20
21
22settings = CalibrationSettings(
23 name="BoostVector Calibrations",
24 expert_username="zlebcr",
25 description=__doc__,
26 input_data_formats=["cdst"],
27 input_data_names=["mumu_tight_or_highm_calib"],
28 input_data_filters={
29 "mumu_tight_or_highm_calib": [
30 INPUT_DATA_FILTERS["Data Tag"]["mumu_tight_or_highm_calib"],
31 INPUT_DATA_FILTERS["Run Type"]["physics"],
32 INPUT_DATA_FILTERS["Data Quality Tag"]["Good Or Recoverable"],
33 INPUT_DATA_FILTERS["Magnet"]["On"]]},
34 expert_config={
35 "outerLoss": "pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
36 "innerLoss": "pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
37 "minPXDhits": 0},
38 depends_on=[beamspot])
39
40
41
42
43def is_cDST_file(fName):
44 """ Check if the file is cDST based on the metadata """
45
46 metaData = get_file_metadata(fName)
47 description = metaData.getDataDescription()
48
49 # if dataLevel is missing, determine from file name
50 if 'dataLevel' not in description:
51 B2WARNING('The cdst/mdst info is not stored in file metadata')
52 return ('cdst' in os.path.basename(fName))
53
54 return (description['dataLevel'] == 'cdst')
55
56
57def get_calibrations(input_data, **kwargs):
58 """
59 Parameters:
60 input_data (dict): Should contain every name from the 'input_data_names' variable as a key.
61 Each value is a dictionary with {"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful for
62 assigning to calibration.files_to_iov
63
64 **kwargs: Configuration options to be sent in. Since this may change we use kwargs as a way to help prevent
65 backwards compatibility problems. But you could use the correct arguments in b2caf-prompt-run for this
66 release explicitly if you want to.
67
68 Currently only kwargs["output_iov"] is used. This is the output IoV range that your payloads should
69 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
70
71 Returns:
72 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
73 """
74 import basf2
75 # Set up config options
76
77 # In this script we want to use one sources of input data.
78 # Get the input files from the input_data variable
79 file_to_iov_physics = input_data["mumu_tight_or_highm_calib"]
80
81 # We might have requested an enormous amount of data across a run range.
82 # There's a LOT more files than runs!
83 # Lets set some limits because this calibration doesn't need that much to run.
84 max_files_per_run = 1000000
85
86 # We filter out any more than 100 files per run. The input data files are sorted alphabetically by b2caf-prompt-run
87 # already. This procedure respects that ordering
88 from prompt.utils import filter_by_max_files_per_run
89
90 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics, max_files_per_run)
91 input_files_physics = list(reduced_file_to_iov_physics.keys())
92 basf2.B2INFO(f"Total number of files actually used as input = {len(input_files_physics)}")
93
94 isCDST = is_cDST_file(input_files_physics[0]) if len(input_files_physics) > 0 else True
95
96 # Get the overall IoV we our process should cover. Includes the end values that we may want to ignore since our output
97 # IoV should be open ended. We could also use this as part of the input data selection in some way.
98 requested_iov = kwargs.get("requested_iov", None)
99
100 from caf.utils import IoV
101 # The actual value our output IoV payload should have. Notice that we've set it open ended.
102 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
103
104
106
107 from ROOT import Belle2 # noqa: make the Belle2 namespace available
108 from ROOT.Belle2 import BoostVectorAlgorithm
109 from basf2 import create_path, register_module
110 import modularAnalysis as ana
111 import vertex
112
113
115
116 from caf.framework import Calibration
117 from caf.strategies import SingleIOV
118
119 # module to be run prior the collector
120 rec_path_1 = create_path()
121 if isCDST:
122 rec_path_1.add_module("RootInput", branchNames=ALWAYS_SAVE_OBJECTS + RAWDATA_OBJECTS)
123 rd.add_unpackers(rec_path_1)
124 re.add_reconstruction(rec_path_1)
125
126 minPXDhits = kwargs['expert_config']['minPXDhits']
127 muSelection = '[p>1.0]'
128 muSelection += ' and abs(dz)<2.0 and abs(dr)<0.5'
129 muSelection += f' and nPXDHits >= {minPXDhits} and nSVDHits >= 8 and nCDCHits >= 20'
130 ana.fillParticleList('mu+:BV', muSelection, path=rec_path_1)
131 ana.reconstructDecay('Upsilon(4S):BV -> mu+:BV mu-:BV', '9.5<M<11.5', path=rec_path_1)
132 vertex.treeFit('Upsilon(4S):BV', updateAllDaughters=True, ipConstraint=True, path=rec_path_1)
133
134 collector_bv = register_module('BoostVectorCollector', Y4SPListName='Upsilon(4S):BV')
135 algorithm_bv = BoostVectorAlgorithm()
136 algorithm_bv.setOuterLoss(kwargs['expert_config']['outerLoss'])
137 algorithm_bv.setInnerLoss(kwargs['expert_config']['innerLoss'])
138
139 calibration_bv = Calibration('BoostVector',
140 collector=collector_bv,
141 algorithms=algorithm_bv,
142 input_files=input_files_physics,
143 pre_collector_path=rec_path_1)
144
145 calibration_bv.strategies = SingleIOV
146
147 # Do this for the default AlgorithmStrategy to force the output payload IoV
148 # It may be different if you are using another strategy like SequentialRunByRun
149 for algorithm in calibration_bv.algorithms:
150 algorithm.params = {"iov_coverage": output_iov}
151
152 # Most other options like database chain and backend args will be overwritten by b2caf-prompt-run.
153 # So we don't bother setting them.
154
155 # You must return all calibrations you want to run in the prompt process, even if it's only one
156 return [calibration_bv]
157
158
def treeFit(list_name, conf_level=0.001, massConstraint=[], ipConstraint=False, updateAllDaughters=False, massConstraintDecayString='', massConstraintMassValues=[], customOriginConstraint=False, customOriginVertex=[0.001, 0, 0.0116], customOriginCovariance=[0.0048, 0, 0, 0, 0.003567, 0, 0, 0, 0.0400], originDimension=3, treatAsInvisible='', ignoreFromVertexFit='', path=None)
Definition: vertex.py:237