10Airflow script to perform BoostVector calibration.
13from prompt
import CalibrationSettings, INPUT_DATA_FILTERS
14from prompt.calibrations.caf_beamspot
import settings
as beamspot
15from basf2
import get_file_metadata, B2WARNING
16from reconstruction
import prepare_cdst_analysis
20settings = CalibrationSettings(
21 name=
"BoostVector Calibrations",
22 expert_username=
"zlebcr",
24 input_data_formats=[
"cdst"],
25 input_data_names=[
"mumu_tight_or_highm_calib"],
27 "mumu_tight_or_highm_calib": [
28 INPUT_DATA_FILTERS[
"Data Tag"][
"mumu_tight_or_highm_calib"],
29 INPUT_DATA_FILTERS[
"Run Type"][
"physics"],
30 INPUT_DATA_FILTERS[
"Data Quality Tag"][
"Good Or Recoverable"],
31 INPUT_DATA_FILTERS[
"Magnet"][
"On"]]},
33 "outerLoss":
"pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
34 "innerLoss":
"pow(rawTime - 8.0, 2) + 10 * pow(maxGap, 2)",
36 depends_on=[beamspot])
41def is_cDST_file(fName):
42 """ Check if the file is cDST based on the metadata """
44 metaData = get_file_metadata(fName)
45 description = metaData.getDataDescription()
48 if 'dataLevel' not in description:
49 B2WARNING(
'The cdst/mdst info is not stored in file metadata')
50 return (
'cdst' in os.path.basename(fName))
52 return (description[
'dataLevel'] ==
'cdst')
55def get_calibrations(input_data, **kwargs):
58 input_data (dict): Should contain every name from the
'input_data_names' variable
as a key.
59 Each value
is a dictionary
with {
"/path/to/file_e1_r5.root": IoV(1,5,1,5), ...}. Useful
for
60 assigning to calibration.files_to_iov
62 **kwargs: Configuration options to be sent
in. Since this may change we use kwargs
as a way to help prevent
63 backwards compatibility problems. But you could use the correct arguments
in b2caf-prompt-run
for this
64 release explicitly
if you want to.
66 Currently only kwargs[
"output_iov"]
is used. This
is the output IoV range that your payloads should
67 correspond to. Generally your highest ExpRun payload should be open ended e.g. IoV(3,4,-1,-1)
70 list(caf.framework.Calibration): All of the calibration objects we want to assign to the CAF process
77 file_to_iov_physics = input_data[
"mumu_tight_or_highm_calib"]
82 max_files_per_run = 1000000
88 reduced_file_to_iov_physics = filter_by_max_files_per_run(file_to_iov_physics, max_files_per_run)
89 input_files_physics = list(reduced_file_to_iov_physics.keys())
90 basf2.B2INFO(f
"Total number of files actually used as input = {len(input_files_physics)}")
92 isCDST = is_cDST_file(input_files_physics[0])
if len(input_files_physics) > 0
else True
96 requested_iov = kwargs.get(
"requested_iov",
None)
98 from caf.utils
import IoV
100 output_iov = IoV(requested_iov.exp_low, requested_iov.run_low, -1, -1)
105 from ROOT
import Belle2
106 from ROOT.Belle2
import BoostVectorAlgorithm
107 from basf2
import create_path, register_module
108 import modularAnalysis
as ana
114 from caf.framework
import Calibration
115 from caf.strategies
import SingleIOV
118 rec_path_1 = create_path()
120 prepare_cdst_analysis(path=rec_path_1, components=[
'SVD',
'CDC',
'ECL',
'KLM'])
122 minPXDhits = kwargs[
'expert_config'][
'minPXDhits']
123 muSelection =
'[p>1.0]'
124 muSelection +=
' and abs(dz)<2.0 and abs(dr)<0.5'
125 muSelection += f
' and nPXDHits >= {minPXDhits} and nSVDHits >= 8 and nCDCHits >= 20'
126 ana.fillParticleList(
'mu+:BV', muSelection, path=rec_path_1)
127 ana.reconstructDecay(
'Upsilon(4S):BV -> mu+:BV mu-:BV',
'9.5<M<11.5', path=rec_path_1)
128 vertex.treeFit(
'Upsilon(4S):BV', updateAllDaughters=
True, ipConstraint=
True, path=rec_path_1)
130 collector_bv = register_module(
'BoostVectorCollector', Y4SPListName=
'Upsilon(4S):BV')
131 algorithm_bv = BoostVectorAlgorithm()
132 algorithm_bv.setOuterLoss(kwargs[
'expert_config'][
'outerLoss'])
133 algorithm_bv.setInnerLoss(kwargs[
'expert_config'][
'innerLoss'])
136 collector=collector_bv,
137 algorithms=algorithm_bv,
138 input_files=input_files_physics,
139 pre_collector_path=rec_path_1)
141 calibration_bv.strategies = SingleIOV
145 for algorithm
in calibration_bv.algorithms:
146 algorithm.params = {
"iov_coverage": output_iov}
152 return [calibration_bv]
def treeFit(list_name, conf_level=0.001, massConstraint=[], ipConstraint=False, updateAllDaughters=False, massConstraintDecayString='', massConstraintMassValues=[], customOriginConstraint=False, customOriginVertex=[0.001, 0, 0.0116], customOriginCovariance=[0.0048, 0, 0, 0, 0.003567, 0, 0, 0, 0.0400], originDimension=3, treatAsInvisible='', ignoreFromVertexFit='', path=None)