Belle II Software development
ECLBackgroundModule Class Reference

A module to study background campaigns and produce histograms. More...

#include <ECLBackgroundModule.h>

Inheritance diagram for ECLBackgroundModule:
HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLBackgroundModule ()
 Constructor.
 
virtual ~ECLBackgroundModule ()
 Destructor.
 
virtual void initialize () override
 Initialize variables.
 
virtual void beginRun () override
 beginRun
 
virtual void event () override
 Event method

 
virtual void endRun () override
 endRun
 
virtual void terminate () override
 terminate
 
virtual void defineHisto () override
 Initialize the histograms.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

int FillARICHBeamBack (BeamBackHit *aBBHit)
 Populate ARICH HAPD dose and flux histograms (from the BeamBack hits array)
 
int BuildECL ()
 Builds geometry (fill Crystal look-up arrays)
 
int SetPosHistos (TH1F *h, TH2F *hFWD, TH2F *hBAR, TH2F *hBWD)
 Create 2D histograms indicating the position of each crystals.
 
TH2F * BuildPosHisto (TH1F *h, const char *sub)
 Convert histogram vs crystal index to geometrical positions.
 
TH1F * BuildThetaIDWideHisto (TH1F *h_cry)
 Convert histogram vs crystal index to average per theta-ID (wide binning)
 
TH1F * BuildARICHringIDHisto (TH1F *h_cell)
 Convert histogram vs ARICH channel ID to average per ring ID.
 
int ARICHmod2row (int modID)
 Get ARICH ring ID from the module index.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

StoreArray< ECLSimHitm_eclArray
 Store array: ECLSimHit.
 
StoreArray< MCParticlem_mcParticles
 Store array: MCParticle.
 
StoreArray< BeamBackHitm_BeamBackArray
 Store array: BeamBackHit.
 
StoreArray< ECLShowerm_eclShowerArray
 Store array: ECLShower.
 
int m_sampleTime
 length of sample in us
 
bool m_doARICH
 Whether or not the ARICH plots are produced.
 
std::vector< int > m_CryInt
 Cell ID of crystal(s) of interest.
 
int m_nEvent {0}
 Event counter.
 
TH1F * h_nECLSimHits {nullptr}
 ECL Sim Hits.
 
TH1F * h_CrystalRadDoseTheta {nullptr}
 Crystal Radiation Dose, actual Theta.
 
TH1F * h_CrystalRadDose {nullptr}
 Crystal Radiation Dose.
 
TH1F * h_CrystalThetaID2 {nullptr}
 Crystal Radiation Dose, ThetaID=2.
 
TH1F * h_CrystalThetaID67 {nullptr}
 Crystal Radiation Dose, ThetaID=67.
 
TH2F * h_HitLocations {nullptr}
 Hit locations.
 
TH1F * h_BarrelDose {nullptr}
 Crystal Radiation Dose in Barrel, 12<thetaID<59.
 
TH1F * hEdepPerRing {nullptr}
 Energy averaged per ring.
 
TH1F * hNevtPerRing {nullptr}
 Event counter averaged per ring (theta-id)
 
TH1F * h_DiodeRadDose {nullptr}
 Diode Radiation Dose.
 
TH1F * h_NeutronFlux {nullptr}
 Neutron Flux in Diodes.
 
TH1F * h_NeutronFluxThetaID2 {nullptr}
 Neutron flux in Diodes, ThetaID=2.
 
TH1F * h_NeutronFluxThetaID67 {nullptr}
 Neutron flux in Diodes, ThetaID=67.
 
TH1F * h_NeutronE {nullptr}
 Neutron Energy.
 
TH1F * h_NeutronEThetaID0 {nullptr}
 Neutron Energy, First Crystal.
 
TH1F * h_PhotonE {nullptr}
 Photon Energy.
 
TH2F * h_ShowerVsTheta {nullptr}
 Shower Energy distribution vs theta.
 
TH1F * h_Shower {nullptr}
 Shower Energy distribution.
 
TH1F * h_ProdVert {nullptr}
 Production Vertex.
 
TH2F * h_ProdVertvsThetaId {nullptr}
 Production Vertex vs thetaID.
 
const double usInYr = 1e13
 us in a year
 
const double GeVtoJ = 1.6e-10
 Joules in a GeV.
 
ECLCrystalDataCrystal [ECLElementNumbers::c_NCrystals] {0}
 Store crystal geometry and mass data.
 
const double DiodeArea = 2 * 2
 Frontal area [cm*cm] of Diodes.
 
const double DiodeThk = 0.1
 Thickness [cm] of Diodes.
 
const double SiRho = 2.33e-3
 Density (silicium) [kg*cm^{-3}] of Si.
 
const double DiodeMass = DiodeArea * DiodeThk * SiRho
 Mass [kg] of Diodes.
 
const double HAPDarea = 7.5 * 7.5
 ARICH geometry parameters.
 
const double HAPDthickness = 0.2
 ARICH: Thickness (cm) of the HAPD boards.
 
const double HAPDmass = 47.25e-3
 ARICH: Mass (kg) of the HAPD boards.
 
const int nHAPD = 420
 ARICH parameter.
 
const int nHAPDrings = 7
 ARICH parameter.
 
const int nHAPDperRing [7] = {42, 48, 54, 60, 66, 72, 78}
 ARICH parameter.
 
TH1F * hEMDose {nullptr}
 Radiation Dose per cell.
 
TH1F * hEnergyPerCrystal {nullptr}
 Energy per cell.
 
TH1F * hDiodeFlux {nullptr}
 Diode Neutron Flux per cell.
 
TH1F * hEgamma {nullptr}
 Log Spectrum of the photons hitting the crystals / 1 MeV.
 
TH1F * hEneu {nullptr}
 Log Spectrum of the neutrons hitting the diodes / 1 MeV.
 
TH1F * hARICHDoseBB {nullptr}
 ARICH Yearly dose (rad) vs module index.
 
TH1F * hHAPDFlux {nullptr}
 ARICH Yearly neutron flux vs module index.
 
TH2F * hEnergyPerCrystalECF {nullptr}
 Energy per crystal Forward Calorimeter.
 
TH2F * hEnergyPerCrystalECB {nullptr}
 Energy per crystal Backward Calorimeter.
 
TH2F * hEnergyPerCrystalBAR {nullptr}
 Energy per crystal Barrel.
 
TH1F * hEnergyPerCrystalWideTID {nullptr}
 Energy per crystal Wide bins.
 
TH2F * hEMDoseECF {nullptr}
 Radiation Dose Forward Calorimeter.
 
TH2F * hEMDoseECB {nullptr}
 Radiation Dose Backward Calorimeter.
 
TH2F * hEMDoseBAR {nullptr}
 Radiation Dose Barrel.
 
TH1F * hEMDoseWideTID {nullptr}
 Radiation Dose Wide bins.
 
TH2F * hDiodeFluxECF {nullptr}
 Diode Neutron Flux Forward Calorimeter.
 
TH2F * hDiodeFluxECB {nullptr}
 Diode Neutron Flux Backward Calorimeter.
 
TH2F * hDiodeFluxBAR {nullptr}
 Diode Neutron Flux Barrel.
 
TH1F * hDiodeFluxWideTID {nullptr}
 Diode Neutron Flux Wide bins.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Static Private Attributes

static const int nECLThetaID = 69
 Number of thetaID values.
 

Detailed Description

A module to study background campaigns and produce histograms.

Definition at line 41 of file ECLBackgroundModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ECLBackgroundModule()

Constructor.

Definition at line 44 of file ECLBackgroundModule.cc.

44 : HistoModule()
45{
46 //Set module properties
47 setDescription("Processes background campaigns and produces histograms. Requires HistoManager");
48
49 std::vector<int> empty;
50 addParam("sampleTime", m_sampleTime, "Length of sample, in us", 1000);
51 addParam("doARICH", m_doARICH, "If true, some ARICH plots (for shielding studies) will be produced", false);
52 addParam("crystalsOfInterest", m_CryInt, "Cell ID of crystals of interest. Dose will be printed at end of run", empty);
53
54}
bool m_doARICH
Whether or not the ARICH plots are produced.
std::vector< int > m_CryInt
Cell ID of crystal(s) of interest.
int m_sampleTime
length of sample in us
HistoModule()
Constructor.
Definition: HistoModule.h:32
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~ECLBackgroundModule()

~ECLBackgroundModule ( )
virtual

Destructor.

Definition at line 56 of file ECLBackgroundModule.cc.

57{
58}

Member Function Documentation

◆ ARICHmod2row()

int ARICHmod2row ( int  modID)
private

Get ARICH ring ID from the module index.

Definition at line 598 of file ECLBackgroundModule.cc.

599{
600 if (modID <= 42) return 0;
601 else if (modID <= 90) return 1;
602 else if (modID <= 144) return 2;
603 else if (modID <= 204) return 3;
604 else if (modID <= 270) return 4;
605 else if (modID <= 342) return 5;
606 else if (modID <= 420) return 6;
607
608 B2WARNING("ECLBackgroundModule: ARICHmod2row: modID out of bound; can't get ring index");
609 return -1;
610}

◆ beginRun()

void beginRun ( void  )
overridevirtual

beginRun

Reimplemented from HistoModule.

Definition at line 173 of file ECLBackgroundModule.cc.

174{
175}

◆ BuildECL()

int BuildECL ( )
private

Builds geometry (fill Crystal look-up arrays)

Definition at line 464 of file ECLBackgroundModule.cc.

465{
466 for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++) {
467 Crystal[i] = new ECLCrystalData(i);
468 }
469 return 1;
470}
ECLCrystalData * Crystal[ECLElementNumbers::c_NCrystals]
Store crystal geometry and mass data.
Class for obtaining crystal details for a given crystal cell An evolved look-up table.
const int c_NCrystals
Number of crystals.

◆ BuildPosHisto()

TH2F * BuildPosHisto ( TH1F *  h,
const char *  sub 
)
private

Convert histogram vs crystal index to geometrical positions.

Definition at line 501 of file ECLBackgroundModule.cc.

502{
503
504 // Initialize variables
505 TH2F* h_out = nullptr;
506
507 // Forward endcap value vs (x,y)
508 if (!strcmp(sub, "forward")) {
509 std::string _name = h->GetName() + std::string("FWD");
510 std::string _title = h->GetTitle() + std::string(" -- Forward Endcap;x(cm);y(cm)");
511 h_out = new TH2F(_name.c_str(), _title.c_str(), 90, -150, 150, 90, -150, 150); //position in cm
512 h_out->Sumw2();
513 for (int i = 0; i < ECLElementNumbers::c_NCrystalsForward; i++) {
514 double value = h->GetBinContent(i + 1);
515 h_out->Fill(floor(Crystal[i]->GetX()),
516 floor(Crystal[i]->GetY()),
517 value);
518 }
519
520 // Backward endcap value vs (x,y)
521 } else if (!strcmp(sub, "backward")) {
522 std::string _name = h->GetName() + std::string("BWD");
523 std::string _title = h->GetTitle() + std::string(" -- Backward Endcap;x(cm);y(cm)");
524 h_out = new TH2F(_name.c_str(), _title.c_str(), 90, -150, 150, 90, -150, 150); //position in cm
525 h_out->Sumw2();
527 double value = h->GetBinContent(i + 1);
528 h_out->Fill(floor(Crystal[i]->GetX()),
529 floor(Crystal[i]->GetY()),
530 value);
531 }
532
533
534 // The rest: barrel value vs (theta_ID, phi_ID)
535 } else if (!strcmp(sub, "barrel")) {
536 std::string _name = h->GetName() + std::string("BAR");
537 std::string _title = h->GetTitle() + std::string(" -- Barrel;#theta_{ID};#phi_{ID}");
538 h_out = new TH2F(_name.c_str(), _title.c_str(), 47, 12, 59, 144, 0, 144); //position in cm (along z and along r*phi)
539 h_out->Sumw2();
541 double value = h->GetBinContent(i + 1);
542 h_out->Fill(Crystal[i]->GetThetaID(), Crystal[i]->GetPhiID(), value);
543 }
544
545 } else {
546 B2WARNING("ECLBackgroundModule: Unable to BuildPosHisto. Check Arguments.");
547 h_out = new TH2F("(empty)", "(empty)", 1, 0, 1, 1, 0, 1);
548 }
549
550 return h_out;
551}
const int c_NCrystalsForwardBarrel
Number of crystals in the forward and barrel ECL.
const int c_NCrystalsForward
Number of crystals in the forward ECL.

◆ BuildThetaIDWideHisto()

TH1F * BuildThetaIDWideHisto ( TH1F *  h_cry)
private

Convert histogram vs crystal index to average per theta-ID (wide binning)

Definition at line 554 of file ECLBackgroundModule.cc.

555{
556
557 //Define the boundaries of the bins
558 static const int _nbins = 21;
559 static const double _xbins[] = { -0.5, 0.5, 4.5, 8.5, 11.5, 12.5,
560 16.5, 20.5, 24.5, 28.5, 32.5,
561 36.5, 40.5, 44.5, 48.5, 52.5,
562 56.5, 58.5, 59.5, 63.5, 67.5, 68.5
563 };
564
565
566 std::string _title = h_cry->GetTitle() + std::string(" vs #theta_{ID} -- averages");
567 std::string _name = h_cry->GetName() + std::string("vsTheWide");
568
569 //New pointer to the returned histogram ...
570 TH1F* h_out = new TH1F(_name.c_str(), _title.c_str(), 1, 0, 1);
571 // ... but only temp variables to the temporary ones
572 TH1F h_mass("h_mass", "Total Mass per Theta-ID", 1, 0, 1);
573 TH1F h_N("h_N", "Entries (unweighted) per Theta-ID bin", 1, 0, 1);
574
575 //Apply all the same binning
576 h_out->SetBins(_nbins, _xbins);
577 h_mass.SetBins(_nbins, _xbins);
578 h_N.SetBins(_nbins, _xbins);
579
580 h_out->SetTitle(_title.c_str());
581 h_out->Sumw2();
582
583 //Make histo for total mass, then divide!
584 for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++) {
585 h_out->Fill(Crystal[i]->GetThetaID(), h_cry->GetBinContent(i + 1) * Crystal[i]->GetMass());
586 h_mass.Fill(Crystal[i]->GetThetaID(), Crystal[i]->GetMass());
587 h_mass.SetBinError(Crystal[i]->GetThetaID(), 0);
588 h_N.Fill(Crystal[i]->GetThetaID());
589 }
590 h_out->SetXTitle("#theta_{ID}");
591 h_out->SetYTitle(h_cry->GetYaxis()->GetTitle());
592 h_out->Divide(&h_mass);
593
594 return h_out;
595}
double GetMass()
get mass of crystal

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
overridevirtual

Initialize the histograms.

Reimplemented from HistoModule.

Definition at line 61 of file ECLBackgroundModule.cc.

62{
63 std::ostringstream s;
64 s << m_sampleTime;
65
66 //initialize histograms
67 h_nECLSimHits = new TH1F("ECL_Sim_Hits", "ECL Sim Hits", 100, 0, 100);
68
69
70 //Radiation dose
71 h_CrystalRadDose = new TH1F("Crystal_Rad_Dose", "Crystal Radiation Dose vs #theta_{ID};#theta_{ID};Gy/yr", 69, -0.5, 68.5);
72 h_CrystalRadDoseTheta = new TH1F("Crystal_Rad_Dose_Theta", "Crystal Radiation Dose vs #theta;#theta (deg);Gy/yr", 100, 12, 152);
73 h_CrystalThetaID2 = new TH1F("Crystal_Dose_ThetaID_2", "Crystal Radiation Dose vs #phi_{ID}, #theta_{ID}=2; #phi_{ID};Gy/yr", 64,
74 -0.5, 63.5);
75 h_CrystalThetaID67 = new TH1F("Crystal_Dose_ThetaID_67", "Crystal Radiation Dose vs #phi_{ID}, #theta_{ID}=67; #phi_{ID};Gy/yr", 64,
76 -0.5, 63.5);
77 h_BarrelDose = new TH1F("Crystal_Dose_Barrel", "Crystal Radiation Dose in Barrel, 12<#theta_{ID}<59; #phi_{ID}; Gy/yr", 144, -0.5,
78 143.5);
79 h_DiodeRadDose = new TH1F("Diode_Rad_Dose", "Diode Radiation Dose vs #theta_{ID};#theta_{ID};Gy/yr", 69, -0.5, 68.5);
80
81 //hit locations
82 h_ProdVert = new TH1F("MCProd_Vert", "Production Vertex;z (cm)", 125, -200, 300);
83 h_HitLocations = new TH2F("Hit_Locations", "Hit locations;z (cm); r (cm)", 250, -200, 300, 80, 0, 160);
84 h_ProdVertvsThetaId = new TH2F("MCProd_Vert_vs_ThetaID", "Production Vertex vs #theta_{ID};#theta_{ID};z (cm)", 69, -0.5, 68.5, 125,
85 -200, 300);
86 hEdepPerRing = new TH1F("hEdepPerRing", "Energy deposited per #theta_{ID};#theta_{ID}; GeV", 69, -0.5, 68.5);
87 hNevtPerRing = new TH1F("hNevtPerRing", "Number of events #theta_{ID} (for pile-up);#theta_{ID};N_{event}", 69, -0.5, 68.5);
88
89
90
91 //Neutrons
92 h_NeutronFluxThetaID2 = new TH1F("Neutron_Flux_ThetaID_2", "Diode Neutron Flux, #theta_{ID}=2;#phi_{ID}; yr^{-1}/cm^{-2}", 64, -0.5,
93 63.5);
94 h_NeutronFluxThetaID67 = new TH1F("Neutron_Flux_ThetaID_67", "Diode Neutron Flux, #theta_{ID}=67;#phi_{ID}; yr^{-1}/cm^{-2}", 64,
95 -0.5, 63.5);
96 h_NeutronFlux = new TH1F("Neutron_Flux", "Diode Neutron Flux vs #theta_{ID};#theta_{ID}; yr^{-1}/cm^{-2}", 69, -0.5, 68.5);
97 h_NeutronE = new TH1F("Neutron_Energy", "Neutron Energy; Energy (MeV)", 200, 0, 0.5);
98 h_NeutronEThetaID0 = new TH1F("Neutron_Energy_ThetaID0", "Neutron Energy, First Crystal; Energy (MeV)", 50, 0, 0.5);
99
100 h_PhotonE = new TH1F("Photon_Energy", "Energy of photons creating hits in ECL; Energy (MeV)", 200, 0, 10);
101
102 //showers
103 TString stime = s.str();
104 h_Shower = new TH1F("Shower_E_Dist", "Shower Energy distribution " + stime + " #mu s;GeV;# of showers", 100, 0, 0.5);
105 h_ShowerVsTheta = new TH2F("Shower_E_Dist_vs_theta", "Shower Energy distribution " + stime + " #mu s;GeV;#theta (deg)", 100, 0, 0.5,
106 180, 0, 180);
107
108
109
110 //
111 // Below are for the ECL shields studies
112 //
114
115 //Doses
116 hEMDose = new TH1F("hEMDose", "Crystal Radiation Dose; Cell ID ; Gy/yr", ECLElementNumbers::c_NCrystals, 0,
118 hEnergyPerCrystal = new TH1F("hEnergyPerCrystal", "Energy per crystal; Cell ID; GeV", ECLElementNumbers::c_NCrystals, 0,
120
121 //Diodes
122 hDiodeFlux = new TH1F("hDiodeFlux", "Diode Neutron Flux ; Cell ID ; 1MeV-equiv / cm^{2} yr", ECLElementNumbers::c_NCrystals, 0,
124
125 //Radiation spectra
126 hEgamma = new TH1F("hEgamma", "Log Spectrum of the photons hitting the crystals / 1 MeV; log_{10}(E_{#gamma}/1MeV) ", 500, -4, 3);
127 hEneu = new TH1F("hEneu", "Log Spectrum of the neutrons hitting the diodes / 1 MeV; log_{10}(E_{n}/1MeV)", 500, -10, 2);
128
129 //ARICH plots
130 if (m_doARICH) {
131 hARICHDoseBB = new TH1F("hARICHDoseBB", "Radiation dose in ARICH boards (cBB); Ring-ID; Gy/yr", 7, -0.5, 6.5);
132 hHAPDFlux = new TH1F("hARICHnFlux", "1-MeV equivalent neutron flux in ARICH diodes (BB) ; Ring-ID ; 1-MeV-equiv / cm^{2} yr", 7,
133 -0.5, 6.5);
134 }
135
136 hEMDoseECF = new TH2F();
137 hEMDoseECB = new TH2F();
138 hEMDoseBAR = new TH2F();
139 hEMDoseWideTID = new TH1F();
140
141 hDiodeFluxECF = new TH2F();
142 hDiodeFluxECB = new TH2F();
143 hDiodeFluxBAR = new TH2F();
144 hDiodeFluxWideTID = new TH1F();
145
146 hEnergyPerCrystalECF = new TH2F();
147 hEnergyPerCrystalECB = new TH2F();
148 hEnergyPerCrystalBAR = new TH2F();
149 hEnergyPerCrystalWideTID = new TH1F();
150
151
152
153}
TH1F * h_DiodeRadDose
Diode Radiation Dose.
TH2F * hEMDoseECF
Radiation Dose Forward Calorimeter.
TH2F * h_ShowerVsTheta
Shower Energy distribution vs theta.
TH2F * hEnergyPerCrystalBAR
Energy per crystal Barrel.
TH1F * hEnergyPerCrystal
Energy per cell.
TH2F * hEnergyPerCrystalECB
Energy per crystal Backward Calorimeter.
TH1F * hEMDoseWideTID
Radiation Dose Wide bins.
TH1F * hEneu
Log Spectrum of the neutrons hitting the diodes / 1 MeV.
TH1F * hARICHDoseBB
ARICH Yearly dose (rad) vs module index.
TH2F * hDiodeFluxECF
Diode Neutron Flux Forward Calorimeter.
TH2F * hEMDoseBAR
Radiation Dose Barrel.
TH2F * hEMDoseECB
Radiation Dose Backward Calorimeter.
TH2F * h_ProdVertvsThetaId
Production Vertex vs thetaID.
TH1F * h_CrystalRadDoseTheta
Crystal Radiation Dose, actual Theta.
TH1F * h_PhotonE
Photon Energy.
TH1F * h_ProdVert
Production Vertex.
TH1F * hNevtPerRing
Event counter averaged per ring (theta-id)
TH2F * h_HitLocations
Hit locations.
TH1F * h_NeutronFluxThetaID67
Neutron flux in Diodes, ThetaID=67.
TH1F * hHAPDFlux
ARICH Yearly neutron flux vs module index.
TH1F * h_NeutronFluxThetaID2
Neutron flux in Diodes, ThetaID=2.
TH1F * h_Shower
Shower Energy distribution.
TH2F * hEnergyPerCrystalECF
Energy per crystal Forward Calorimeter.
TH1F * hEdepPerRing
Energy averaged per ring.
TH1F * hEnergyPerCrystalWideTID
Energy per crystal Wide bins.
TH1F * hDiodeFluxWideTID
Diode Neutron Flux Wide bins.
TH1F * h_CrystalThetaID2
Crystal Radiation Dose, ThetaID=2.
TH2F * hDiodeFluxECB
Diode Neutron Flux Backward Calorimeter.
TH1F * h_CrystalThetaID67
Crystal Radiation Dose, ThetaID=67.
TH1F * h_BarrelDose
Crystal Radiation Dose in Barrel, 12<thetaID<59.
TH1F * hEgamma
Log Spectrum of the photons hitting the crystals / 1 MeV.
TH1F * hEMDose
Radiation Dose per cell.
TH1F * h_NeutronFlux
Neutron Flux in Diodes.
TH2F * hDiodeFluxBAR
Diode Neutron Flux Barrel.
TH1F * h_NeutronE
Neutron Energy.
TH1F * hDiodeFlux
Diode Neutron Flux per cell.
TH1F * h_CrystalRadDose
Crystal Radiation Dose.
TH1F * h_nECLSimHits
ECL Sim Hits.
TH1F * h_NeutronEThetaID0
Neutron Energy, First Crystal.

◆ endRun()

void endRun ( void  )
overridevirtual

endRun

Reimplemented from HistoModule.

Definition at line 380 of file ECLBackgroundModule.cc.

381{
382 B2INFO("ECLBackgroundModule: Total Number of events: " << m_nEvent);
383
384 //print doses of crystals of interest
385 for (int i = 0; i < (int)m_CryInt.size(); i++) {
387 B2WARNING("ECLBackgroundModule: Invalid cell ID. must be less than 8736");
388 continue;
389 }
390 double dose = hEMDose->GetBinContent(m_CryInt[i] + 1); //add 1 since bin #1 corresponds to cell ID #0
391 int thetaID = Crystal[m_CryInt[i]]->GetThetaID();
392 int phiID = Crystal[m_CryInt[i]]->GetPhiID();
393 B2RESULT("Dose in Crystal " << m_CryInt[i] << ": " << dose << " ThetaID=" << thetaID << ", PhiID=" << phiID);
394 }
395
396
401
402
403 hEMDoseECF = BuildPosHisto(hEMDose, "forward");
404 hEMDoseECB = BuildPosHisto(hEMDose, "backward");
405 hEMDoseBAR = BuildPosHisto(hEMDose, "barrel");
407
412
413 hEMDose->SetTitle("Crystal Radiation Dose vs Cell ID");
414 hDiodeFlux->SetTitle("Diode Neutron Flux vs Cell ID");
415
416}
TH2F * BuildPosHisto(TH1F *h, const char *sub)
Convert histogram vs crystal index to geometrical positions.
TH1F * BuildThetaIDWideHisto(TH1F *h_cry)
Convert histogram vs crystal index to average per theta-ID (wide binning)
int GetPhiID()
get phiID of crystal
int GetThetaID()
get thetaID of crystal

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Event method

Reimplemented from HistoModule.

Definition at line 177 of file ECLBackgroundModule.cc.

178{
179
180
181
182 //some variables that will be used many times
183 int m_cellID, m_thetaID, m_phiID, pid, NperRing;
184 double edep, theta, Energy, diodeDose, weightedFlux;
185
186 //ignore events with huge number of SimHits (usually a glitchy event)
187 if (m_eclArray.getEntries() > 4000) {
188 B2INFO("ECLBackgroundModule: Skipping event #" << m_nEvent << " due to large number of ECLSimHits");
189 m_nEvent++;
190 return;
191 }
192
193 bool isE = false;
194 //bool EinTheta[nECLThetaID] = {false};
195
196 double edepSum = 0;
197 //double edepSumTheta[nECLThetaID] = {0};
198 //double E_tot[ECLElementNumbers::c_NCrystals] = {0};
199
200
201 auto edepSumTheta = new double[nECLThetaID]();
202 auto E_tot = new double[ECLElementNumbers::c_NCrystals]();
203
204 auto EinTheta = new bool[nECLThetaID]();
205 std::fill_n(EinTheta, nECLThetaID, false);
206
207
208 h_nECLSimHits->Fill(m_eclArray.getEntries()); //number of ECL hits in an event
209
210 //MC ID of photon hits
211 vector<int> MCPhotonIDs;
212
213 int hitNum = m_eclArray.getEntries();
214 for (int i = 0; i < hitNum; i++) { //loop over ECLSimHits
215 ECLSimHit* aECLHit = m_eclArray[i];
216 m_cellID = aECLHit->getCellId() - 1; //cell ID
217 edep = aECLHit->getEnergyDep(); //energy deposited
218 G4ThreeVector hitPosn = aECLHit->getPosition(); //position of hit
219 pid = aECLHit->getPDGCode();
220 float Mass = Crystal[m_cellID]->GetMass();
221 m_thetaID = Crystal[m_cellID]->GetThetaID();
222 m_phiID = Crystal[m_cellID]->GetPhiID();
223 NperRing = Crystal[m_cellID]->GetNperThetaID(); //number of crystals in this theta ring
224 theta = Crystal[m_cellID]->GetTheta();
225
226
227 //get Track ID of photons which create the SimHits
228 if (pid == 22) MCPhotonIDs.push_back(aECLHit->getTrackId());
229
230 edepSum = edepSum + edep;
231 E_tot[m_cellID] = edep + E_tot[m_cellID]; //sum energy deposited in this crystal
232 edepSumTheta[m_thetaID] = edepSumTheta[m_thetaID] + edep; //sum of energy for this thetaID value
233 EinTheta[m_thetaID] = true; //there is an energy deposit in this theta ring. used later
234 isE = true;
235
236
237 //fill histograms
238 //radiation dose for this SimHit
239 double dose = edep * GeVtoJ * usInYr / (m_sampleTime * Mass);
240
241 h_CrystalRadDoseTheta->Fill(theta, dose / NperRing);
242 h_CrystalRadDose->AddBinContent(m_thetaID + 1, dose / NperRing);
243 hEMDose->AddBinContent(m_cellID + 1, dose);
244 hEnergyPerCrystal->AddBinContent(m_cellID + 1, edep);
245
246 //2nd thetaID ring
247 if (m_thetaID == 2) {
248 h_CrystalThetaID2->AddBinContent(m_phiID + 1, dose);
249 }
250 //67th thetaID ring
251 if (m_thetaID == 67) {
252 h_CrystalThetaID67->AddBinContent(m_phiID + 1, dose);
253 }
254 //Barrel
255 if (m_thetaID < 59 && m_thetaID > 12) {
256 h_BarrelDose->AddBinContent(m_phiID + 1, dose / 46);
257 }
258
259 //location of the hit
260 h_HitLocations->Fill(hitPosn.z(), hitPosn.perp());
261
262 }
263
264
265 //for pileup noise estimation. To properly produce pileup noise plot, see comment at EOF.
266 for (int iECLCell = 0; iECLCell < ECLElementNumbers::c_NCrystals; iECLCell++) {
267 edep = E_tot[iECLCell];
268 m_thetaID = Crystal[iECLCell]->GetThetaID();
269 NperRing = Crystal[iECLCell]->GetNperThetaID();
270 if (edep > 0.000000000001) {
271 hNevtPerRing->Fill(m_thetaID, 1.0 / NperRing);
272 hEdepPerRing->Fill(m_thetaID, edep / NperRing);
273 }
274
275 }
276
277
278 //One track can create several ECLSimHits. Remove the duplicates
279 sort(MCPhotonIDs.begin(), MCPhotonIDs.end());
280 vector<int>::iterator it;
281 it = std::unique(MCPhotonIDs.begin(), MCPhotonIDs.end());
282 MCPhotonIDs.resize(std::distance(MCPhotonIDs.begin(), it));
283
284
285 //loop over MCParticles to find the photons that caused the simhits
286 for (int i = 0; i < (int)MCPhotonIDs.size(); i++) {
287 for (int j = 0; j < m_mcParticles.getEntries(); j++) {
288 if (m_mcParticles[j]->getIndex() == MCPhotonIDs[i]) {
289 h_PhotonE->Fill(m_mcParticles[j]->getEnergy() * 1000);
290 hEgamma->Fill(log10(m_mcParticles[j]->getEnergy() * 1000));
291 break; //once the correct MCParticle is found, stop looping over MCParticles
292 }
293 }
294 }
295
296 //*****************end of crystal analysis
297
298 //start of diode analysis
299 int neuHits = m_BeamBackArray.getEntries();
300 for (int iHits = 0; iHits < neuHits; iHits++) { //loop over m_BeamBackArray
301 BeamBackHit* aBeamBackSimHit = m_BeamBackArray[iHits];
302
303 //get relevant values
304 m_cellID = aBeamBackSimHit->getIdentifier();
305 double damage = aBeamBackSimHit->getNeutronWeight();
306 edep = aBeamBackSimHit->getEnergyDeposit();
307 pid = aBeamBackSimHit->getPDG();
308 int SubDet = aBeamBackSimHit->getSubDet();
309 Energy = aBeamBackSimHit->getEnergy();
310 //ROOT::Math::XYZVector rHit = aBeamBackSimHit->getPosition(); //currently not used
311
312
313 if (SubDet == 6) { //ECL
314
315 m_thetaID = Crystal[m_cellID]->GetThetaID();
316 m_phiID = Crystal[m_cellID]->GetPhiID();
317 NperRing = Crystal[m_cellID]->GetNperThetaID();
318 diodeDose = edep * GeVtoJ * usInYr / (m_sampleTime * DiodeMass);
319 h_DiodeRadDose->AddBinContent(m_thetaID + 1, diodeDose / NperRing); //diode radiation dose plot
320
321 if (pid == 2112) {
322
323 weightedFlux = damage * usInYr / (m_sampleTime * DiodeArea) ; //neutrons per cm^2 per year
324
325 //neutron plots
326 if (m_thetaID == 0) h_NeutronEThetaID0->Fill(Energy * 1000);
327 h_NeutronE->Fill(Energy * 1000);
328 hEneu->Fill(log10(Energy * 1000));
329
330 h_NeutronFlux->AddBinContent(m_thetaID + 1, weightedFlux / NperRing);
331 hDiodeFlux->AddBinContent(m_cellID + 1, weightedFlux);
332
333 if (m_thetaID == 2) h_NeutronFluxThetaID2->AddBinContent(m_phiID + 1, weightedFlux);
334 if (m_thetaID == 67) h_NeutronFluxThetaID67->AddBinContent(m_phiID + 1, weightedFlux);
335
336
337 }
338
339 } else if (SubDet == 4 && m_doARICH) { //ARICH
340 FillARICHBeamBack(aBeamBackSimHit);
341 }
342 }
343
344 int nShower = m_eclShowerArray.getEntries();
345 for (int i = 0; i < nShower; i++) {
346 ECLShower* aShower = m_eclShowerArray[i];
347
348 Energy = aShower->getEnergy();
349 theta = aShower->getTheta();
350
351 //get number of background showers with energy above 20MeV
352 if (Energy > 0.02) {
353 h_Shower->Fill(Energy);
354 h_ShowerVsTheta->Fill(Energy, theta * TMath::RadToDeg());
355 }
356 }
357
358
359 for (int i = 0; i < nECLThetaID; i++) {
360 if (EinTheta[i]) {
361 //0th McParticle in an event is the origin of all particles
362 h_ProdVertvsThetaId->Fill(i, m_mcParticles[0]->getProductionVertex().z(), edepSumTheta[i]);
363 }
364 }
365
366
367 if (isE) {
368 h_ProdVert->Fill(m_mcParticles[0]->getProductionVertex().z(), edepSum);
369 }
370
371 if (m_nEvent % ((int)m_sampleTime * 100) == 0) B2INFO("ECLBackgroundModule: At Event #" << m_nEvent);
372 m_nEvent++;
373
374 delete[] edepSumTheta;
375 delete[] E_tot;
376 delete[] EinTheta;
377
378}
Class BeamBackHit - Stores hits from beam backgound simulation.
Definition: BeamBackHit.h:28
double getNeutronWeight() const
get the effective neutron weigth
Definition: BeamBackHit.h:122
double getEnergy() const
Get energy of the particle.
Definition: BeamBackHit.h:110
double getEnergyDeposit() const
Get particle energy deposit in sensitive volume.
Definition: BeamBackHit.h:116
int getPDG() const
Get the lund code of the particle that hit the sensitive area.
Definition: BeamBackHit.h:89
int getIdentifier() const
Get the identifier of subdetector component in which hit occured.
Definition: BeamBackHit.h:83
int getSubDet() const
Det the index of subdetector in which hit occured.
Definition: BeamBackHit.h:86
StoreArray< ECLShower > m_eclShowerArray
Store array: ECLShower.
static const int nECLThetaID
Number of thetaID values.
const double DiodeArea
Frontal area [cm*cm] of Diodes.
const double usInYr
us in a year
int FillARICHBeamBack(BeamBackHit *aBBHit)
Populate ARICH HAPD dose and flux histograms (from the BeamBack hits array)
const double DiodeMass
Mass [kg] of Diodes.
StoreArray< BeamBackHit > m_BeamBackArray
Store array: BeamBackHit.
StoreArray< ECLSimHit > m_eclArray
Store array: ECLSimHit.
StoreArray< MCParticle > m_mcParticles
Store array: MCParticle.
const double GeVtoJ
Joules in a GeV.
int GetNperThetaID()
get number of crystals in theta ring
double GetTheta()
get theta value of crystal
Class to store ECL Showers.
Definition: ECLShower.h:30
double getEnergy() const
Get Energy.
Definition: ECLShower.h:287
double getTheta() const
Get Theta.
Definition: ECLShower.h:297
ClassECLSimHit - Geant4 simulated hit for the ECL.
Definition: ECLSimHit.h:29
int getPDGCode() const
Get Particle PDG (can be one of secondaries)
Definition: ECLSimHit.h:96
int getTrackId() const
Get Track ID.
Definition: ECLSimHit.h:91
int getCellId() const
Get Cell ID.
Definition: ECLSimHit.h:86
double getEnergyDep() const
Get Deposit energy.
Definition: ECLSimHit.h:106
G4ThreeVector getPosition() const
Get Position.
Definition: ECLSimHit.h:126
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ FillARICHBeamBack()

int FillARICHBeamBack ( BeamBackHit aBBHit)
private

Populate ARICH HAPD dose and flux histograms (from the BeamBack hits array)

Definition at line 461 of file ECLBackgroundModule.cc.

461{ return 1;}

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize variables.

Reimplemented from HistoModule.

Definition at line 155 of file ECLBackgroundModule.cc.

156{
157
158 REG_HISTOGRAM
159
160 if (m_doARICH) {
161 B2INFO("ECLBackgroundModule: ARICH plots are being produced");
162 // Initialize variables
163#ifdef DOARICH
164 m_arichgp = ARICHGeometryPar::Instance();
165#endif
166 }
167
168 m_nEvent = 0;
169 BuildECL();
170
171}
int BuildECL()
Builds geometry (fill Crystal look-up arrays)
static ARICHGeometryPar * Instance()
Static method to get a reference to the ARICHGeometryPar instance.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ SetPosHistos()

int SetPosHistos ( TH1F *  h,
TH2F *  hFWD,
TH2F *  hBAR,
TH2F *  hBWD 
)
private

Create 2D histograms indicating the position of each crystals.

Definition at line 473 of file ECLBackgroundModule.cc.

474{
475 // Currently not used
476 //std::string FWDtitle = h->GetTitle() + std::string(" -- Forward Endcap");
477 //std::string BWDtitle = h->GetTitle() + std::string(" -- Backward Endcap");
478 //std::string BARtitle = h->GetTitle() + std::string(" -- Barrel");
479 //std::string FWDname = h->GetTitle() + std::string("FWD");
480 //std::string BWDname = h->GetTitle() + std::string("BWD");
481 //std::string BARname = h->GetTitle() + std::string("BAR");
482
483 // Fill 2D histograms with the values in the 1D histogram
484 for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++) {
485 float value = h->GetBinContent(i + 1);
486
488 hFWD->Fill(floor(Crystal[i]->GetX()), floor(Crystal[i]->GetY()), value);
489
491 hBWD->Fill(floor(Crystal[i]->GetX()), floor(Crystal[i]->GetY()), value);
492
493 } else
494 hBAR->Fill(floor(Crystal[i]->GetZ()), floor(Crystal[i]->GetR() * (Crystal[i]->GetPhi() - 180) * TMath::DegToRad()), value);
495 }
496
497 return 1;
498}

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

terminate

Reimplemented from HistoModule.

Definition at line 418 of file ECLBackgroundModule.cc.

419{
420}

Member Data Documentation

◆ Crystal

Store crystal geometry and mass data.

Definition at line 151 of file ECLBackgroundModule.h.

◆ DiodeArea

const double DiodeArea = 2 * 2
private

Frontal area [cm*cm] of Diodes.

Definition at line 176 of file ECLBackgroundModule.h.

◆ DiodeMass

const double DiodeMass = DiodeArea * DiodeThk * SiRho
private

Mass [kg] of Diodes.

Definition at line 182 of file ECLBackgroundModule.h.

◆ DiodeThk

const double DiodeThk = 0.1
private

Thickness [cm] of Diodes.

Definition at line 178 of file ECLBackgroundModule.h.

◆ GeVtoJ

const double GeVtoJ = 1.6e-10
private

Joules in a GeV.

Definition at line 148 of file ECLBackgroundModule.h.

◆ h_BarrelDose

TH1F* h_BarrelDose {nullptr}
private

Crystal Radiation Dose in Barrel, 12<thetaID<59.

Definition at line 109 of file ECLBackgroundModule.h.

◆ h_CrystalRadDose

TH1F* h_CrystalRadDose {nullptr}
private

Crystal Radiation Dose.

Definition at line 101 of file ECLBackgroundModule.h.

◆ h_CrystalRadDoseTheta

TH1F* h_CrystalRadDoseTheta {nullptr}
private

Crystal Radiation Dose, actual Theta.

Definition at line 99 of file ECLBackgroundModule.h.

◆ h_CrystalThetaID2

TH1F* h_CrystalThetaID2 {nullptr}
private

Crystal Radiation Dose, ThetaID=2.

Definition at line 103 of file ECLBackgroundModule.h.

◆ h_CrystalThetaID67

TH1F* h_CrystalThetaID67 {nullptr}
private

Crystal Radiation Dose, ThetaID=67.

Definition at line 105 of file ECLBackgroundModule.h.

◆ h_DiodeRadDose

TH1F* h_DiodeRadDose {nullptr}
private

Diode Radiation Dose.

Definition at line 120 of file ECLBackgroundModule.h.

◆ h_HitLocations

TH2F* h_HitLocations {nullptr}
private

Hit locations.

Definition at line 107 of file ECLBackgroundModule.h.

◆ h_nECLSimHits

TH1F* h_nECLSimHits {nullptr}
private

ECL Sim Hits.

Definition at line 96 of file ECLBackgroundModule.h.

◆ h_NeutronE

TH1F* h_NeutronE {nullptr}
private

Neutron Energy.

Definition at line 128 of file ECLBackgroundModule.h.

◆ h_NeutronEThetaID0

TH1F* h_NeutronEThetaID0 {nullptr}
private

Neutron Energy, First Crystal.

Definition at line 130 of file ECLBackgroundModule.h.

◆ h_NeutronFlux

TH1F* h_NeutronFlux {nullptr}
private

Neutron Flux in Diodes.

Definition at line 122 of file ECLBackgroundModule.h.

◆ h_NeutronFluxThetaID2

TH1F* h_NeutronFluxThetaID2 {nullptr}
private

Neutron flux in Diodes, ThetaID=2.

Definition at line 124 of file ECLBackgroundModule.h.

◆ h_NeutronFluxThetaID67

TH1F* h_NeutronFluxThetaID67 {nullptr}
private

Neutron flux in Diodes, ThetaID=67.

Definition at line 126 of file ECLBackgroundModule.h.

◆ h_PhotonE

TH1F* h_PhotonE {nullptr}
private

Photon Energy.

Definition at line 132 of file ECLBackgroundModule.h.

◆ h_ProdVert

TH1F* h_ProdVert {nullptr}
private

Production Vertex.

Definition at line 141 of file ECLBackgroundModule.h.

◆ h_ProdVertvsThetaId

TH2F* h_ProdVertvsThetaId {nullptr}
private

Production Vertex vs thetaID.

Definition at line 143 of file ECLBackgroundModule.h.

◆ h_Shower

TH1F* h_Shower {nullptr}
private

Shower Energy distribution.

Definition at line 138 of file ECLBackgroundModule.h.

◆ h_ShowerVsTheta

TH2F* h_ShowerVsTheta {nullptr}
private

Shower Energy distribution vs theta.

Definition at line 136 of file ECLBackgroundModule.h.

◆ HAPDarea

const double HAPDarea = 7.5 * 7.5
private

ARICH geometry parameters.

ARICH: Area (cm^2) of the HAPD boards

Definition at line 194 of file ECLBackgroundModule.h.

◆ HAPDmass

const double HAPDmass = 47.25e-3
private

ARICH: Mass (kg) of the HAPD boards.

Definition at line 198 of file ECLBackgroundModule.h.

◆ HAPDthickness

const double HAPDthickness = 0.2
private

ARICH: Thickness (cm) of the HAPD boards.

Definition at line 196 of file ECLBackgroundModule.h.

◆ hARICHDoseBB

TH1F* hARICHDoseBB {nullptr}
private

ARICH Yearly dose (rad) vs module index.

Based on energy of all BeamBackgrounds

Definition at line 226 of file ECLBackgroundModule.h.

◆ hDiodeFlux

TH1F* hDiodeFlux {nullptr}
private

Diode Neutron Flux per cell.

Definition at line 217 of file ECLBackgroundModule.h.

◆ hDiodeFluxBAR

TH2F* hDiodeFluxBAR {nullptr}
private

Diode Neutron Flux Barrel.

Definition at line 254 of file ECLBackgroundModule.h.

◆ hDiodeFluxECB

TH2F* hDiodeFluxECB {nullptr}
private

Diode Neutron Flux Backward Calorimeter.

Definition at line 252 of file ECLBackgroundModule.h.

◆ hDiodeFluxECF

TH2F* hDiodeFluxECF {nullptr}
private

Diode Neutron Flux Forward Calorimeter.

Definition at line 250 of file ECLBackgroundModule.h.

◆ hDiodeFluxWideTID

TH1F* hDiodeFluxWideTID {nullptr}
private

Diode Neutron Flux Wide bins.

Definition at line 256 of file ECLBackgroundModule.h.

◆ hEdepPerRing

TH1F* hEdepPerRing {nullptr}
private

Energy averaged per ring.

Definition at line 112 of file ECLBackgroundModule.h.

◆ hEgamma

TH1F* hEgamma {nullptr}
private

Log Spectrum of the photons hitting the crystals / 1 MeV.

Definition at line 220 of file ECLBackgroundModule.h.

◆ hEMDose

TH1F* hEMDose {nullptr}
private

Radiation Dose per cell.

Definition at line 211 of file ECLBackgroundModule.h.

◆ hEMDoseBAR

TH2F* hEMDoseBAR {nullptr}
private

Radiation Dose Barrel.

Definition at line 245 of file ECLBackgroundModule.h.

◆ hEMDoseECB

TH2F* hEMDoseECB {nullptr}
private

Radiation Dose Backward Calorimeter.

Definition at line 243 of file ECLBackgroundModule.h.

◆ hEMDoseECF

TH2F* hEMDoseECF {nullptr}
private

Radiation Dose Forward Calorimeter.

Definition at line 241 of file ECLBackgroundModule.h.

◆ hEMDoseWideTID

TH1F* hEMDoseWideTID {nullptr}
private

Radiation Dose Wide bins.

Definition at line 247 of file ECLBackgroundModule.h.

◆ hEnergyPerCrystal

TH1F* hEnergyPerCrystal {nullptr}
private

Energy per cell.

Definition at line 214 of file ECLBackgroundModule.h.

◆ hEnergyPerCrystalBAR

TH2F* hEnergyPerCrystalBAR {nullptr}
private

Energy per crystal Barrel.

Definition at line 235 of file ECLBackgroundModule.h.

◆ hEnergyPerCrystalECB

TH2F* hEnergyPerCrystalECB {nullptr}
private

Energy per crystal Backward Calorimeter.

Definition at line 233 of file ECLBackgroundModule.h.

◆ hEnergyPerCrystalECF

TH2F* hEnergyPerCrystalECF {nullptr}
private

Energy per crystal Forward Calorimeter.

Definition at line 231 of file ECLBackgroundModule.h.

◆ hEnergyPerCrystalWideTID

TH1F* hEnergyPerCrystalWideTID {nullptr}
private

Energy per crystal Wide bins.

Definition at line 237 of file ECLBackgroundModule.h.

◆ hEneu

TH1F* hEneu {nullptr}
private

Log Spectrum of the neutrons hitting the diodes / 1 MeV.

Definition at line 222 of file ECLBackgroundModule.h.

◆ hHAPDFlux

TH1F* hHAPDFlux {nullptr}
private

ARICH Yearly neutron flux vs module index.

Based on energy of all BeamBackgrounds

Definition at line 228 of file ECLBackgroundModule.h.

◆ hNevtPerRing

TH1F* hNevtPerRing {nullptr}
private

Event counter averaged per ring (theta-id)

Definition at line 115 of file ECLBackgroundModule.h.

◆ m_BeamBackArray

StoreArray<BeamBackHit> m_BeamBackArray
private

Store array: BeamBackHit.

Definition at line 78 of file ECLBackgroundModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_CryInt

std::vector<int> m_CryInt
private

Cell ID of crystal(s) of interest.

Definition at line 90 of file ECLBackgroundModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_doARICH

bool m_doARICH
private

Whether or not the ARICH plots are produced.

Definition at line 87 of file ECLBackgroundModule.h.

◆ m_eclArray

StoreArray<ECLSimHit> m_eclArray
private

Store array: ECLSimHit.

Definition at line 72 of file ECLBackgroundModule.h.

◆ m_eclShowerArray

StoreArray<ECLShower> m_eclShowerArray
private

Store array: ECLShower.

Definition at line 81 of file ECLBackgroundModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_mcParticles

StoreArray<MCParticle> m_mcParticles
private

Store array: MCParticle.

Definition at line 75 of file ECLBackgroundModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_nEvent

int m_nEvent {0}
private

Event counter.

Definition at line 93 of file ECLBackgroundModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_sampleTime

int m_sampleTime
private

length of sample in us

Definition at line 84 of file ECLBackgroundModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ nECLThetaID

const int nECLThetaID = 69
staticprivate

Number of thetaID values.

Definition at line 172 of file ECLBackgroundModule.h.

◆ nHAPD

const int nHAPD = 420
private

ARICH parameter.

Definition at line 202 of file ECLBackgroundModule.h.

◆ nHAPDperRing

const int nHAPDperRing[7] = {42, 48, 54, 60, 66, 72, 78}
private

ARICH parameter.

Definition at line 206 of file ECLBackgroundModule.h.

◆ nHAPDrings

const int nHAPDrings = 7
private

ARICH parameter.

Definition at line 204 of file ECLBackgroundModule.h.

◆ SiRho

const double SiRho = 2.33e-3
private

Density (silicium) [kg*cm^{-3}] of Si.

Definition at line 180 of file ECLBackgroundModule.h.

◆ usInYr

const double usInYr = 1e13
private

us in a year

Definition at line 146 of file ECLBackgroundModule.h.


The documentation for this class was generated from the following files: