Belle II Software development
ECLDigitCalibratorPureCsIModule Class Reference

Class derived from ECLDigitCalibratorModule, only difference are the names. More...

#include <ECLDigitCalibratorModule.h>

Inheritance diagram for ECLDigitCalibratorPureCsIModule:
ECLDigitCalibratorModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

virtual const char * eclDigitArrayName () const override
 PureCsI Name of the ECLDigitsPureCsI.
 
virtual const char * eclCalDigitArrayName () const override
 PureCsI Name of the ECLCalDigitsPureCsI.
 
virtual const char * eclDspArrayName () const override
 Name of the ECLDspPureCsI.
 
virtual const char * eventLevelClusteringInfoName () const override
 PureCsI Name of the EventLevelClusteringInfoPureCsI.
 
virtual void initialize () override
 Initialize variables.
 
virtual void beginRun () override
 begin run.
 
virtual void event () override
 event per event.
 
virtual void endRun () override
 end run.
 
virtual void terminate () override
 terminate.
 
virtual const char * eclPureCsIInfoArrayName () const
 Name of the ECL pure CsI Information.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

void initializeCalibration ()
 reads calibration constants, performs checks, put them into a vector
 
void callbackCalibration (DBObjPtr< ECLCrystalCalib > &cal, std::vector< float > &constants, std::vector< float > &constantsUnc)
 reads calibration constants
 
double getT99 (const int cellid, const double energy, const bool fitfailed, const int bgcount) const
 t99%.
 
int determineBackgroundECL ()
 count out of time digits to determine baclground levels
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

double m_backgroundEnergyCut
 Energy cut for background level counting.
 
double m_backgroundTimingCut
 Timing window for background level counting.
 
const int c_nCrystals = ECLElementNumbers::c_NCrystals
 Number of ECL crystals.
 
std::vector< float > v_calibrationCrystalElectronics
 single crystal electronics calibration as vector
 
std::vector< float > v_calibrationCrystalElectronicsUnc
 single crystal electronics calibration as vector uncertainty
 
DBObjPtr< ECLCrystalCalibm_calibrationCrystalElectronics
 single crystal electronics calibration
 
std::vector< float > v_calibrationCrystalEnergy
 single crystal energy calibration as vector
 
std::vector< float > v_calibrationCrystalEnergyUnc
 single crystal energy calibration as vector uncertainty
 
DBObjPtr< ECLCrystalCalibm_calibrationCrystalEnergy
 single crystal energy calibration
 
std::vector< float > v_calibrationCrystalElectronicsTime
 single crystal time calibration offset electronics as vector
 
std::vector< float > v_calibrationCrystalElectronicsTimeUnc
 single crystal time calibration offset electronics as vector uncertainty
 
DBObjPtr< ECLCrystalCalibm_calibrationCrystalElectronicsTime
 single crystal time calibration offset electronics
 
std::vector< float > v_calibrationCrystalTimeOffset
 single crystal time calibration offset as vector
 
std::vector< float > v_calibrationCrystalTimeOffsetUnc
 single crystal time calibration offset as vector uncertainty
 
DBObjPtr< ECLCrystalCalibm_calibrationCrystalTimeOffset
 single crystal time calibration offset
 
std::vector< float > v_calibrationCrateTimeOffset
 single crate time calibration offset as vector (per crystal)
 
std::vector< float > v_calibrationCrateTimeOffsetUnc
 single crate time calibration offset as vector uncertainty (per crystal)
 
DBObjPtr< ECLCrystalCalibm_calibrationCrateTimeOffset
 single crate time calibration offset (per crystal)
 
std::vector< float > v_calibrationCrystalFlightTime
 single crystal time calibration TOF as vector
 
std::vector< float > v_calibrationCrystalFlightTimeUnc
 single crystal time calibration TOF as vector uncertainty
 
DBObjPtr< ECLCrystalCalibm_calibrationCrystalFlightTime
 single crystal time calibration TOF
 
StoreObjPtr< EventLevelClusteringInfom_eventLevelClusteringInfo
 event level clustering info
 
StoreArray< ECLDigitm_eclDigits
 storearray ECLDigit
 
StoreArray< ECLCalDigitm_eclCalDigits
 storearray ECLCalDigit
 
StoreArray< ECLDspm_eclDsps
 storearray ECLDsp
 
StoreArray< ECLPureCsIInfom_eclPureCsIInfo
 storearray ECLPureCsIInfo - Special information for pure CsI simulation
 
double m_timeInverseSlope
 Time calibration inverse slope "a".
 
double m_pureCsIEnergyCalib = 0.00005
 conversion factor from ADC counts to GeV.
 
double m_pureCsITimeCalib = 10.
 conversion factor from eclPureCsIDigitizer to ns.
 
double m_pureCsITimeOffset = 0.31
 ad-hoc offset correction for pureCsI timing/
 
const double c_timeResolutionForFitFailed = 1.0e9
 Time resolution for failed fits".
 
const double c_timeForFitFailed = 0.0
 Time for failed fits".
 
std::string m_fileBackgroundName
 Background filename.
 
TFile * m_fileBackground {nullptr}
 Background file.
 
TH1F * m_th1fBackground {nullptr}
 Background histogram.
 
const double c_pol2Var1 = 1684.0
 2-order fit for p1 Var1 + Var2*bg + Var3*bg^2.
 
const double c_pol2Var2 = 3080.0
 2-order fit for p1.
 
const double c_pol2Var3 = -613.9
 2-order fit for p1.
 
double m_pol2Max
 Maximum of p1 2-order fit to limit values.
 
const int c_nominalBG = 183
 Number of out of time digits at BGx1.0.
 
double m_averageBG
 Average dose per crystal calculated from m_th1dBackground.
 
const double c_minT99 = 3.5
 The minimum t99.
 
bool m_simulatePure = 0
 Flag to set pure CsI simulation option.
 
std::unique_ptr< Belle2::ECL::ECLTimingUtilitiesECLTimeUtil
 ECL timing tools.
 
double m_energyDependenceTimeOffsetFitParam_p1 = -999
 p1 in "energy dependence equation"
 
double m_energyDependenceTimeOffsetFitParam_p2 = -999
 p2 in "energy dependence equation"
 
double m_energyDependenceTimeOffsetFitParam_p3 = -999
 p3 in "energy dependence equation"
 
double m_energyDependenceTimeOffsetFitParam_p4 = -999
 p4 in "energy dependence equation"
 
double m_energyDependenceTimeOffsetFitParam_p5 = -999
 p5 in "energy dependence equation"
 
double m_energyDependenceTimeOffsetFitParam_p6 = -999
 p6 in "energy dependence equation"
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Class derived from ECLDigitCalibratorModule, only difference are the names.

Definition at line 180 of file ECLDigitCalibratorModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtualinherited

begin run.

Reimplemented from Module.

Definition at line 183 of file ECLDigitCalibratorModule.cc.

184{
185 // Check if any of the calibration constants have changed
186 if (m_calibrationCrystalElectronics.hasChanged()) {
189 } else
190 B2ERROR("ECLDigitCalibratorModule::beginRun - Couldn't find m_calibrationCrystalElectronics for current run!");
191 }
192
193 if (m_calibrationCrystalEnergy.hasChanged()) {
196 } else
197 B2ERROR("ECLDigitCalibratorModule::beginRun - Couldn't find m_calibrationCrystalEnergy for current run!");
198 }
199
200 if (m_calibrationCrystalElectronicsTime.hasChanged()) {
204 } else
205 B2ERROR("ECLDigitCalibratorModule::beginRun - Couldn't find m_calibrationCrystalElectronicsTime for current run!");
206 }
207
208 if (m_calibrationCrystalTimeOffset.hasChanged()) {
211 } else
212 B2ERROR("ECLDigitCalibratorModule::beginRun - Couldn't find m_calibrationCrystalTimeOffset for current run!");
213 }
214
215 if (m_calibrationCrateTimeOffset.hasChanged()) {
218 } else
219 B2ERROR("ECLDigitCalibratorModule::beginRun - Couldn't find m_calibrationCrateTimeOffset for current run!");
220 }
221
222 if (m_calibrationCrystalFlightTime.hasChanged()) {
225 } else
226 B2ERROR("ECLDigitCalibratorModule::beginRun - Couldn't find m_calibrationCrystalFlightTime for current run!");
227 }
228}
DBObjPtr< ECLCrystalCalib > m_calibrationCrateTimeOffset
single crate time calibration offset (per crystal)
DBObjPtr< ECLCrystalCalib > m_calibrationCrystalElectronics
single crystal electronics calibration
std::vector< float > v_calibrationCrystalElectronicsUnc
single crystal electronics calibration as vector uncertainty
std::vector< float > v_calibrationCrateTimeOffsetUnc
single crate time calibration offset as vector uncertainty (per crystal)
std::vector< float > v_calibrationCrystalElectronicsTimeUnc
single crystal time calibration offset electronics as vector uncertainty
DBObjPtr< ECLCrystalCalib > m_calibrationCrystalEnergy
single crystal energy calibration
std::vector< float > v_calibrationCrystalElectronicsTime
single crystal time calibration offset electronics as vector
std::vector< float > v_calibrationCrystalFlightTime
single crystal time calibration TOF as vector
void callbackCalibration(DBObjPtr< ECLCrystalCalib > &cal, std::vector< float > &constants, std::vector< float > &constantsUnc)
reads calibration constants
std::vector< float > v_calibrationCrystalEnergy
single crystal energy calibration as vector
std::vector< float > v_calibrationCrystalEnergyUnc
single crystal energy calibration as vector uncertainty
std::vector< float > v_calibrationCrateTimeOffset
single crate time calibration offset as vector (per crystal)
DBObjPtr< ECLCrystalCalib > m_calibrationCrystalTimeOffset
single crystal time calibration offset
std::vector< float > v_calibrationCrystalElectronics
single crystal electronics calibration as vector
DBObjPtr< ECLCrystalCalib > m_calibrationCrystalElectronicsTime
single crystal time calibration offset electronics
std::vector< float > v_calibrationCrystalTimeOffset
single crystal time calibration offset as vector
DBObjPtr< ECLCrystalCalib > m_calibrationCrystalFlightTime
single crystal time calibration TOF
std::vector< float > v_calibrationCrystalFlightTimeUnc
single crystal time calibration TOF as vector uncertainty
std::vector< float > v_calibrationCrystalTimeOffsetUnc
single crystal time calibration offset as vector uncertainty

◆ callbackCalibration()

void callbackCalibration ( DBObjPtr< ECLCrystalCalib > &  cal,
std::vector< float > &  constants,
std::vector< float > &  constantsUnc 
)
privateinherited

reads calibration constants

Definition at line 116 of file ECLDigitCalibratorModule.cc.

118{
119 constants = cal->getCalibVector();
120 constantsUnc = cal->getCalibUncVector();
121}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ determineBackgroundECL()

int determineBackgroundECL ( )
privateinherited

count out of time digits to determine baclground levels

Definition at line 433 of file ECLDigitCalibratorModule.cc.

434{
435 // EventLevelClustering counters
436 using regionCounter = std::unordered_map<ECL::DetectorRegion, uint>;
437
438 regionCounter outOfTimeCount{{ECL::DetectorRegion::FWD, 0},
439 {ECL::DetectorRegion::BRL, 0},
440 {ECL::DetectorRegion::BWD, 0}};
441
443
444 // Loop over the input array
445 for (auto& aECLCalDigit : m_eclCalDigits) {
446 if (abs(aECLCalDigit.getTime()) >= m_backgroundTimingCut) {
447 if (aECLCalDigit.getEnergy() >= m_backgroundEnergyCut) {
448 // Get digit theta
449 const B2Vector3D position = geom->GetCrystalPos(aECLCalDigit.getCellId() - 1);
450 const double theta = position.Theta();
451
452 // Get detector region
453 const auto detectorRegion = ECL::getDetectorRegion(theta);
454
455 // Count out of time digits per region
456 ++outOfTimeCount.at(detectorRegion);
457 }
458 }
459 }
460
461 // Save EventLevelClusteringInfo
464 }
465
466 m_eventLevelClusteringInfo->setNECLCalDigitsOutOfTimeFWD(outOfTimeCount.at(ECL::DetectorRegion::FWD));
467 m_eventLevelClusteringInfo->setNECLCalDigitsOutOfTimeBarrel(outOfTimeCount.at(ECL::DetectorRegion::BRL));
468 m_eventLevelClusteringInfo->setNECLCalDigitsOutOfTimeBWD(outOfTimeCount.at(ECL::DetectorRegion::BWD));
469
470 B2DEBUG(35, "ECLDigitCalibratorModule::determineBackgroundECL found " << outOfTimeCount.at(ECL::DetectorRegion::FWD) << ", " <<
471 outOfTimeCount.at(ECL::DetectorRegion::BRL) << ", " << outOfTimeCount.at(ECL::DetectorRegion::BWD) <<
472 " out of time digits in FWD, BRL, BWD");
473
474 return m_eventLevelClusteringInfo->getNECLCalDigitsOutOfTime();
475}
DataType Theta() const
The polar angle.
Definition: B2Vector3.h:153
double m_backgroundTimingCut
Timing window for background level counting.
double m_backgroundEnergyCut
Energy cut for background level counting.
StoreObjPtr< EventLevelClusteringInfo > m_eventLevelClusteringInfo
event level clustering info
StoreArray< ECLCalDigit > m_eclCalDigits
storearray ECLCalDigit
The Class for ECL Geometry Parameters.
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.

◆ eclCalDigitArrayName()

virtual const char * eclCalDigitArrayName ( ) const
inlineoverridevirtual

PureCsI Name of the ECLCalDigitsPureCsI.

Reimplemented from ECLDigitCalibratorModule.

Definition at line 187 of file ECLDigitCalibratorModule.h.

188 { return "ECLCalDigitsPureCsI" ; }

◆ eclDigitArrayName()

virtual const char * eclDigitArrayName ( ) const
inlineoverridevirtual

PureCsI Name of the ECLDigitsPureCsI.

Reimplemented from ECLDigitCalibratorModule.

Definition at line 183 of file ECLDigitCalibratorModule.h.

184 { return "ECLDigitsPureCsI" ; }

◆ eclDspArrayName()

virtual const char * eclDspArrayName ( ) const
inlineoverridevirtual

Name of the ECLDspPureCsI.

Reimplemented from ECLDigitCalibratorModule.

Definition at line 191 of file ECLDigitCalibratorModule.h.

192 { return "ECLDspsPureCsI" ; }

◆ eclPureCsIInfoArrayName()

virtual const char * eclPureCsIInfoArrayName ( ) const
inlinevirtualinherited

Name of the ECL pure CsI Information.

Definition at line 87 of file ECLDigitCalibratorModule.h.

88 { return "ECLPureCsIInfo" ; }

◆ endRun()

void endRun ( void  )
overridevirtualinherited

end run.

Reimplemented from Module.

Definition at line 389 of file ECLDigitCalibratorModule.cc.

390{
391}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtualinherited

event per event.

Reimplemented from Module.

Definition at line 231 of file ECLDigitCalibratorModule.cc.

232{
233
234 // Loop over the input array
235 for (auto& aECLDigit : m_eclDigits) {
236
237 bool is_pure_csi = 0;
238
239 // append an ECLCalDigit to the storearray
240 const auto aECLCalDigit = m_eclCalDigits.appendNew();
241
242 // get the cell id from the ECLDigit as identifier
243 const int cellid = aECLDigit.getCellId();
244
245 // check that the cell id is valid
246 if (cellid < 1 or cellid > c_nCrystals) {
247 B2FATAL("ECLDigitCalibrationModule::event():" << cellid << " out of range!");
248 }
249
250 // perform the digit energy calibration: E = A * Ce * Cs
251 const int amplitude = aECLDigit.getAmp();
252 double calibratedEnergy = 0;
253
254 if (m_simulatePure) {
255 if (aECLDigit.getRelated<ECLPureCsIInfo>(eclPureCsIInfoArrayName()) != nullptr) {
256 if (aECLDigit.getRelated<ECLPureCsIInfo>(eclPureCsIInfoArrayName())->getPureCsI())
257 is_pure_csi = 1;
258 }
259 }
260
261 if (is_pure_csi) {
262 calibratedEnergy = amplitude * m_pureCsIEnergyCalib;
263 } else {
264 calibratedEnergy = amplitude * v_calibrationCrystalElectronics[cellid - 1] * v_calibrationCrystalEnergy[cellid - 1];
265 }
266 if (calibratedEnergy < 0.0)
267 calibratedEnergy = 0.0;
268
269 // perform the digit timing calibration: t = c * (tfit - Te - Ts)
270 const int time = aECLDigit.getTimeFit();
271 const int quality = aECLDigit.getQuality();
272 double calibratedTime = c_timeForFitFailed;
273 if (quality == 1) {
274 aECLCalDigit->addStatus(ECLCalDigit::c_IsFailedFit); // this is used to flag failed fits
275 } else {
276 // only calibrate digit time if we have a good waveform fit
277 if (is_pure_csi) {
278 calibratedTime = m_pureCsITimeCalib * m_timeInverseSlope * (time - v_calibrationCrystalElectronicsTime[cellid - 1] -
281 } else {
282 calibratedTime = m_timeInverseSlope * (time - v_calibrationCrystalElectronicsTime[cellid - 1] -
284 v_calibrationCrateTimeOffset[cellid - 1]) -
286 }
287
288 // For data, apply a correction to the time as a function of the signal amplitude. Correction determined from a fit.
289 // No correction for MC
290 bool m_IsMCFlag = Environment::Instance().isMC();
291 B2DEBUG(35, "cellid = " << cellid << ", m_IsMCFlag = " << m_IsMCFlag);
292
293 if (!m_IsMCFlag) {
294 double energyTimeShift = ECLTimeUtil->energyDependentTimeOffsetElectronic(amplitude * v_calibrationCrystalElectronics[cellid - 1]) *
296 B2DEBUG(35, "cellid = " << cellid << ", amplitude = " << amplitude << ", corrected amplitude = " << amplitude*
297 v_calibrationCrystalElectronics[cellid - 1] << ", time before t(E) shift = " << calibratedTime << ", t(E) shift = " <<
298 energyTimeShift << " ns");
299 calibratedTime -= energyTimeShift;
300 }
301 }
302
303 B2DEBUG(35, "cellid = " << cellid << ", amplitude = " << amplitude << ", calibrated energy = " << calibratedEnergy);
304 B2DEBUG(35, "cellid = " << cellid << ", time = " << time << ", calibratedTime = " << calibratedTime);
305
306 // Calibrating offline fit results
307 ECLDsp* aECLDsp = ECLDsp::getByCellID(cellid);
308 aECLCalDigit->setTwoComponentChi2(-1);
309 aECLCalDigit->setTwoComponentSavedChi2(ECLDsp::photonHadron, -1);
310 aECLCalDigit->setTwoComponentSavedChi2(ECLDsp::photonHadronBackgroundPhoton, -1);
311 aECLCalDigit->setTwoComponentSavedChi2(ECLDsp::photonDiodeCrossing, -1);
312 aECLCalDigit->setTwoComponentTotalEnergy(-1);
313 aECLCalDigit->setTwoComponentHadronEnergy(-1);
314 aECLCalDigit->setTwoComponentDiodeEnergy(-1);
315 // copy online fit quality from ECLDigit
316 const int online_quality = aECLDigit.getQuality();
317 if (online_quality == 1) {
318 aECLCalDigit->addStatus(ECLCalDigit::c_OnlineFitQuality1);
319 } else if (online_quality == 2) {
320 aECLCalDigit->addStatus(ECLCalDigit::c_OnlineFitQuality2);
321 } else if (online_quality == 3) {
322 aECLCalDigit->addStatus(ECLCalDigit::c_OnlineFitQuality3);
323 } else if (online_quality == 0) {
324 aECLCalDigit->addStatus(ECLCalDigit::c_OnlineFitQuality0);
325 }
326
327 if (aECLDsp) {
328 // require ECLDigit to have offline waveform
329 if (aECLDsp->getTwoComponentChi2() > 0) {
330 // require offline waveform to have offline fit result
331
332 const double calibratedTwoComponentTotalEnergy = aECLDsp->getTwoComponentTotalAmp() * v_calibrationCrystalElectronics[cellid - 1] *
333 v_calibrationCrystalEnergy[cellid - 1];
334 const double calibratedTwoComponentHadronEnergy = aECLDsp->getTwoComponentHadronAmp() * v_calibrationCrystalElectronics[cellid -
335 1] *
336 v_calibrationCrystalEnergy[cellid - 1];
337 const double calibratedTwoComponentDiodeEnergy = aECLDsp->getTwoComponentDiodeAmp() * v_calibrationCrystalElectronics[cellid - 1] *
338 v_calibrationCrystalEnergy[cellid - 1];
339 const double twoComponentChi2 = aECLDsp->getTwoComponentChi2();
340 const ECLDsp::TwoComponentFitType twoComponentFitType = aECLDsp->getTwoComponentFitType();
341
342 aECLCalDigit->setTwoComponentTotalEnergy(calibratedTwoComponentTotalEnergy);
343 aECLCalDigit->setTwoComponentHadronEnergy(calibratedTwoComponentHadronEnergy);
344 aECLCalDigit->setTwoComponentDiodeEnergy(calibratedTwoComponentDiodeEnergy);
345 aECLCalDigit->setTwoComponentChi2(twoComponentChi2);
346 aECLCalDigit->setTwoComponentSavedChi2(ECLDsp::photonHadron, aECLDsp->getTwoComponentSavedChi2(ECLDsp::photonHadron));
347 aECLCalDigit->setTwoComponentSavedChi2(ECLDsp::photonHadronBackgroundPhoton,
349 aECLCalDigit->setTwoComponentSavedChi2(ECLDsp::photonDiodeCrossing, aECLDsp->getTwoComponentSavedChi2(ECLDsp::photonDiodeCrossing));
350 aECLCalDigit->setTwoComponentFitType(twoComponentFitType);
351 }
352 }
353
354 // fill the ECLCalDigit with the cell id, the calibrated information and calibration status
355 aECLCalDigit->setCellId(cellid);
356
357 aECLCalDigit->setEnergy(calibratedEnergy);
358 aECLCalDigit->addStatus(ECLCalDigit::c_IsEnergyCalibrated);
359
360 aECLCalDigit->setTime(calibratedTime);
361 aECLCalDigit->addStatus(ECLCalDigit::c_IsTimeCalibrated);
362
363 // set a relation to the ECLDigit
364 aECLCalDigit->addRelationTo(&aECLDigit);
365 }
366
367 // determine background level
368 const int bgCount = determineBackgroundECL();
369
370 // set the t99 (time resolution)
371 for (auto& aECLCalDigit : m_eclCalDigits) {
372
373 // perform the time resolution calibration
374 const double t99 = getT99(aECLCalDigit.getCellId(),
375 aECLCalDigit.getEnergy(),
376 aECLCalDigit.hasStatus(ECLCalDigit::c_IsFailedFit),
377 bgCount); // calibrated time resolution
378 aECLCalDigit.setTimeResolution(t99);
379
380 if (t99 == c_timeResolutionForFitFailed) {
381 aECLCalDigit.addStatus(ECLCalDigit::c_IsFailedTimeResolution);
382 }
383
384 aECLCalDigit.addStatus(ECLCalDigit::c_IsTimeResolutionCalibrated);
385 }
386}
double m_pureCsITimeCalib
conversion factor from eclPureCsIDigitizer to ns.
virtual const char * eclPureCsIInfoArrayName() const
Name of the ECL pure CsI Information.
double m_pureCsITimeOffset
ad-hoc offset correction for pureCsI timing/
double getT99(const int cellid, const double energy, const bool fitfailed, const int bgcount) const
t99%.
StoreArray< ECLDigit > m_eclDigits
storearray ECLDigit
const double c_timeResolutionForFitFailed
Time resolution for failed fits".
std::unique_ptr< Belle2::ECL::ECLTimingUtilities > ECLTimeUtil
ECL timing tools.
const double c_timeForFitFailed
Time for failed fits".
int determineBackgroundECL()
count out of time digits to determine baclground levels
double m_timeInverseSlope
Time calibration inverse slope "a".
double m_pureCsIEnergyCalib
conversion factor from ADC counts to GeV.
const int c_nCrystals
Number of ECL crystals.
bool m_simulatePure
Flag to set pure CsI simulation option.
Class to store ECL ShaperDSP waveform ADC data.
Definition: ECLDsp.h:25
double getTwoComponentHadronAmp() const
get two comp hadron amp
Definition: ECLDsp.h:136
double getTwoComponentSavedChi2(TwoComponentFitType FitTypeIn) const
get two comp chi2 for a fit type see enum TwoComponentFitType in ECLDsp.h for description of fit type...
Definition: ECLDsp.h:152
TwoComponentFitType
Offline two component fit type.
Definition: ECLDsp.h:29
@ photonHadronBackgroundPhoton
photon + hadron template + pile-up photon fit
Definition: ECLDsp.h:32
@ photonDiodeCrossing
photon + diode template fit
Definition: ECLDsp.h:33
@ photonHadron
photon + hadron template fit
Definition: ECLDsp.h:31
double getTwoComponentTotalAmp() const
get two comp total amp
Definition: ECLDsp.h:131
double getTwoComponentChi2() const
get two comp chi2
Definition: ECLDsp.h:146
TwoComponentFitType getTwoComponentFitType() const
get two comp fit type
Definition: ECLDsp.h:171
static ECLDsp * getByCellID(int cid)
Find ECLDsp by Cell ID using linear search.
Definition: ECLDsp.cc:14
double getTwoComponentDiodeAmp() const
get two comp diode amp
Definition: ECLDsp.h:141
Class to store ECL crystal type relation to ECLDigit for the simulation pure CsI upgrade option fille...
bool isMC() const
Do we have generated, not real data?
Definition: Environment.cc:54
static Environment & Instance()
Static method to get a reference to the Environment instance.
Definition: Environment.cc:28

◆ eventLevelClusteringInfoName()

virtual const char * eventLevelClusteringInfoName ( ) const
inlineoverridevirtual

PureCsI Name of the EventLevelClusteringInfoPureCsI.

Reimplemented from ECLDigitCalibratorModule.

Definition at line 195 of file ECLDigitCalibratorModule.h.

196 { return "EventLevelClusteringInfoPureCsI" ; }

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getT99()

double getT99 ( const int  cellid,
const double  energy,
const bool  fitfailed,
const int  bgcount 
) const
privateinherited

t99%.

Definition at line 399 of file ECLDigitCalibratorModule.cc.

400{
401
402 // if this digit is calibrated to the trigger time, we set the resolution to 'very bad' (to be discussed)
403 if (fitfailed)
405
406 // Get the background level [MeV / mus]
407 const double bglevel = TMath::Min((double)bgcount / (double)c_nominalBG * m_th1fBackground->GetBinContent(cellid) / m_averageBG,
408 m_pol2Max); // c_nominalBG = 183 for actual version of digitizer, m_averageBG is about 2 MeV/ mus
409
410 // Get p1 as function of background level
411 const double p1 = c_pol2Var1 + c_pol2Var2 * bglevel + c_pol2Var3 * bglevel * bglevel;
412
413 // inverse energy in 1/MeV
414 double einv = 0.;
415 if (energy > 1e-12)
416 einv = 1. / (energy / Belle2::Unit::MeV);
417
418 // calculate t99 using the inverse energy and p1 (p0 is zero)
419 double t99 = p1 * einv;
420
421 // for high energies we fix t99 to 3.5ns
422 if (t99 < c_minT99)
423 t99 = c_minT99;
424
425 B2DEBUG(35, "ECLDigitCalibratorModule::getCalibratedTimeResolution: dose = " << m_th1fBackground->GetBinContent(
426 cellid)
427 << ", bglevel = " << bglevel << ", cellid = " << cellid << ", t99 = " << t99 << ", energy = " << energy / Belle2::Unit::MeV);
428
429 return t99;
430}
const double c_pol2Var2
2-order fit for p1.
TH1F * m_th1fBackground
Background histogram.
const double c_minT99
The minimum t99.
const double c_pol2Var1
2-order fit for p1 Var1 + Var2*bg + Var3*bg^2.
const double c_pol2Var3
2-order fit for p1.
double m_averageBG
Average dose per crystal calculated from m_th1dBackground.
double m_pol2Max
Maximum of p1 2-order fit to limit values.
const int c_nominalBG
Number of out of time digits at BGx1.0.
static const double MeV
[megaelectronvolt]
Definition: Unit.h:114

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtualinherited

Initialize variables.

Reimplemented from Module.

Definition at line 124 of file ECLDigitCalibratorModule.cc.

125{
126 // mdst dataobjects
127 // This object is registered by few packages. Let's be agnostic about the
128 // execution order of the modules: the first package run registers the module
132
133 // Register Digits, CalDigits and their relation in datastore
134 m_eclDigits.isRequired(eclDigitArrayName());
135 m_eclCalDigits.registerInDataStore(eclCalDigitArrayName());
136 m_eclCalDigits.registerRelationTo(m_eclDigits);
137
138 // initialize calibration
140
141 // initialize time resolution (not yet from the database)
142 // read the Background correction factors (for full background)
143 m_fileBackground = new TFile(m_fileBackgroundName.c_str(), "READ");
144 if (!m_fileBackground)
145 B2FATAL("Could not find file: " << m_fileBackgroundName);
146 m_th1fBackground = dynamic_cast<TH1F*>(m_fileBackground->Get("background"));
147 if (!m_th1fBackground)
148 B2FATAL("Could not find m_th1fBackground");
149
150 // average BG value from m_th1fBackground
151 m_averageBG = m_th1fBackground->Integral() / m_th1fBackground->GetEntries();
152
153 // get maximum position ("x") of 2-order pol background for t99
154 if (fabs(c_pol2Var3) > 1e-12) {
156 } else {
157 m_pol2Max = 0.;
158 }
159
166 B2DEBUG(80, "m_energyDependenceTimeOffsetFitParam_p1 = " << m_energyDependenceTimeOffsetFitParam_p1);
167 B2DEBUG(80, "m_energyDependenceTimeOffsetFitParam_p2 = " << m_energyDependenceTimeOffsetFitParam_p2);
168 B2DEBUG(80, "m_energyDependenceTimeOffsetFitParam_p3 = " << m_energyDependenceTimeOffsetFitParam_p3);
169 B2DEBUG(80, "m_energyDependenceTimeOffsetFitParam_p4 = " << m_energyDependenceTimeOffsetFitParam_p4);
170 B2DEBUG(80, "m_energyDependenceTimeOffsetFitParam_p5 = " << m_energyDependenceTimeOffsetFitParam_p5);
171 B2DEBUG(80, "m_energyDependenceTimeOffsetFitParam_p6 = " << m_energyDependenceTimeOffsetFitParam_p6);
172
179 }
180}
double m_energyDependenceTimeOffsetFitParam_p5
p5 in "energy dependence equation"
virtual const char * eventLevelClusteringInfoName() const
Name of the EventLevelClusteringInfo.
double m_energyDependenceTimeOffsetFitParam_p2
p2 in "energy dependence equation"
std::string m_fileBackgroundName
Background filename.
double m_energyDependenceTimeOffsetFitParam_p3
p3 in "energy dependence equation"
double m_energyDependenceTimeOffsetFitParam_p6
p6 in "energy dependence equation"
double m_energyDependenceTimeOffsetFitParam_p4
p4 in "energy dependence equation"
void initializeCalibration()
reads calibration constants, performs checks, put them into a vector
double m_energyDependenceTimeOffsetFitParam_p1
p1 in "energy dependence equation"
virtual const char * eclDigitArrayName() const
Name of the ECLDigit.
virtual const char * eclCalDigitArrayName() const
Name of the ECLCalDigit.

◆ initializeCalibration()

void initializeCalibration ( )
privateinherited

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtualinherited

terminate.

Reimplemented from Module.

Definition at line 394 of file ECLDigitCalibratorModule.cc.

395{
396}

Member Data Documentation

◆ c_minT99

const double c_minT99 = 3.5
privateinherited

The minimum t99.

Definition at line 159 of file ECLDigitCalibratorModule.h.

◆ c_nCrystals

const int c_nCrystals = ECLElementNumbers::c_NCrystals
privateinherited

Number of ECL crystals.

Definition at line 97 of file ECLDigitCalibratorModule.h.

◆ c_nominalBG

const int c_nominalBG = 183
privateinherited

Number of out of time digits at BGx1.0.

Definition at line 157 of file ECLDigitCalibratorModule.h.

◆ c_pol2Var1

const double c_pol2Var1 = 1684.0
privateinherited

2-order fit for p1 Var1 + Var2*bg + Var3*bg^2.

Definition at line 153 of file ECLDigitCalibratorModule.h.

◆ c_pol2Var2

const double c_pol2Var2 = 3080.0
privateinherited

2-order fit for p1.

Definition at line 154 of file ECLDigitCalibratorModule.h.

◆ c_pol2Var3

const double c_pol2Var3 = -613.9
privateinherited

2-order fit for p1.

Definition at line 155 of file ECLDigitCalibratorModule.h.

◆ c_timeForFitFailed

const double c_timeForFitFailed = 0.0
privateinherited

Time for failed fits".

Definition at line 146 of file ECLDigitCalibratorModule.h.

◆ c_timeResolutionForFitFailed

const double c_timeResolutionForFitFailed = 1.0e9
privateinherited

Time resolution for failed fits".

Definition at line 145 of file ECLDigitCalibratorModule.h.

◆ ECLTimeUtil

std::unique_ptr< Belle2::ECL::ECLTimingUtilities > ECLTimeUtil
privateinherited
Initial value:
=
std::make_unique<Belle2::ECL::ECLTimingUtilities>()

ECL timing tools.

Definition at line 164 of file ECLDigitCalibratorModule.h.

◆ m_averageBG

double m_averageBG
privateinherited

Average dose per crystal calculated from m_th1dBackground.

Definition at line 158 of file ECLDigitCalibratorModule.h.

◆ m_backgroundEnergyCut

double m_backgroundEnergyCut
privateinherited

Energy cut for background level counting.

Definition at line 94 of file ECLDigitCalibratorModule.h.

◆ m_backgroundTimingCut

double m_backgroundTimingCut
privateinherited

Timing window for background level counting.

Definition at line 95 of file ECLDigitCalibratorModule.h.

◆ m_calibrationCrateTimeOffset

DBObjPtr<ECLCrystalCalib> m_calibrationCrateTimeOffset
privateinherited

single crate time calibration offset (per crystal)

Definition at line 119 of file ECLDigitCalibratorModule.h.

◆ m_calibrationCrystalElectronics

DBObjPtr<ECLCrystalCalib> m_calibrationCrystalElectronics
privateinherited

single crystal electronics calibration

Definition at line 101 of file ECLDigitCalibratorModule.h.

◆ m_calibrationCrystalElectronicsTime

DBObjPtr<ECLCrystalCalib> m_calibrationCrystalElectronicsTime
privateinherited

single crystal time calibration offset electronics

Definition at line 110 of file ECLDigitCalibratorModule.h.

◆ m_calibrationCrystalEnergy

DBObjPtr<ECLCrystalCalib> m_calibrationCrystalEnergy
privateinherited

single crystal energy calibration

Definition at line 105 of file ECLDigitCalibratorModule.h.

◆ m_calibrationCrystalFlightTime

DBObjPtr<ECLCrystalCalib> m_calibrationCrystalFlightTime
privateinherited

single crystal time calibration TOF

Definition at line 123 of file ECLDigitCalibratorModule.h.

◆ m_calibrationCrystalTimeOffset

DBObjPtr<ECLCrystalCalib> m_calibrationCrystalTimeOffset
privateinherited

single crystal time calibration offset

Definition at line 114 of file ECLDigitCalibratorModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_eclCalDigits

StoreArray<ECLCalDigit> m_eclCalDigits
privateinherited

storearray ECLCalDigit

Definition at line 128 of file ECLDigitCalibratorModule.h.

◆ m_eclDigits

StoreArray<ECLDigit> m_eclDigits
privateinherited

storearray ECLDigit

Definition at line 127 of file ECLDigitCalibratorModule.h.

◆ m_eclDsps

StoreArray<ECLDsp> m_eclDsps
privateinherited

storearray ECLDsp

Definition at line 129 of file ECLDigitCalibratorModule.h.

◆ m_eclPureCsIInfo

StoreArray<ECLPureCsIInfo> m_eclPureCsIInfo
privateinherited

storearray ECLPureCsIInfo - Special information for pure CsI simulation

Definition at line 130 of file ECLDigitCalibratorModule.h.

◆ m_energyDependenceTimeOffsetFitParam_p1

double m_energyDependenceTimeOffsetFitParam_p1 = -999
privateinherited

p1 in "energy dependence equation"

Definition at line 170 of file ECLDigitCalibratorModule.h.

◆ m_energyDependenceTimeOffsetFitParam_p2

double m_energyDependenceTimeOffsetFitParam_p2 = -999
privateinherited

p2 in "energy dependence equation"

Definition at line 171 of file ECLDigitCalibratorModule.h.

◆ m_energyDependenceTimeOffsetFitParam_p3

double m_energyDependenceTimeOffsetFitParam_p3 = -999
privateinherited

p3 in "energy dependence equation"

Definition at line 172 of file ECLDigitCalibratorModule.h.

◆ m_energyDependenceTimeOffsetFitParam_p4

double m_energyDependenceTimeOffsetFitParam_p4 = -999
privateinherited

p4 in "energy dependence equation"

Definition at line 173 of file ECLDigitCalibratorModule.h.

◆ m_energyDependenceTimeOffsetFitParam_p5

double m_energyDependenceTimeOffsetFitParam_p5 = -999
privateinherited

p5 in "energy dependence equation"

Definition at line 174 of file ECLDigitCalibratorModule.h.

◆ m_energyDependenceTimeOffsetFitParam_p6

double m_energyDependenceTimeOffsetFitParam_p6 = -999
privateinherited

p6 in "energy dependence equation"

Definition at line 175 of file ECLDigitCalibratorModule.h.

◆ m_eventLevelClusteringInfo

StoreObjPtr<EventLevelClusteringInfo> m_eventLevelClusteringInfo
privateinherited

event level clustering info

Definition at line 125 of file ECLDigitCalibratorModule.h.

◆ m_fileBackground

TFile* m_fileBackground {nullptr}
privateinherited

Background file.

Definition at line 150 of file ECLDigitCalibratorModule.h.

◆ m_fileBackgroundName

std::string m_fileBackgroundName
privateinherited

Background filename.

Definition at line 149 of file ECLDigitCalibratorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_pol2Max

double m_pol2Max
privateinherited

Maximum of p1 2-order fit to limit values.

Definition at line 156 of file ECLDigitCalibratorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_pureCsIEnergyCalib

double m_pureCsIEnergyCalib = 0.00005
privateinherited

conversion factor from ADC counts to GeV.

Definition at line 134 of file ECLDigitCalibratorModule.h.

◆ m_pureCsITimeCalib

double m_pureCsITimeCalib = 10.
privateinherited

conversion factor from eclPureCsIDigitizer to ns.

Definition at line 135 of file ECLDigitCalibratorModule.h.

◆ m_pureCsITimeOffset

double m_pureCsITimeOffset = 0.31
privateinherited

ad-hoc offset correction for pureCsI timing/

Definition at line 136 of file ECLDigitCalibratorModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_simulatePure

bool m_simulatePure = 0
privateinherited

Flag to set pure CsI simulation option.

Definition at line 161 of file ECLDigitCalibratorModule.h.

◆ m_th1fBackground

TH1F* m_th1fBackground {nullptr}
privateinherited

Background histogram.

Definition at line 151 of file ECLDigitCalibratorModule.h.

◆ m_timeInverseSlope

double m_timeInverseSlope
privateinherited

Time calibration inverse slope "a".

Definition at line 132 of file ECLDigitCalibratorModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ v_calibrationCrateTimeOffset

std::vector< float > v_calibrationCrateTimeOffset
privateinherited

single crate time calibration offset as vector (per crystal)

Definition at line 116 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrateTimeOffsetUnc

std::vector< float > v_calibrationCrateTimeOffsetUnc
privateinherited

single crate time calibration offset as vector uncertainty (per crystal)

Definition at line 117 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalElectronics

std::vector< float > v_calibrationCrystalElectronics
privateinherited

single crystal electronics calibration as vector

Definition at line 99 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalElectronicsTime

std::vector< float > v_calibrationCrystalElectronicsTime
privateinherited

single crystal time calibration offset electronics as vector

Definition at line 107 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalElectronicsTimeUnc

std::vector< float > v_calibrationCrystalElectronicsTimeUnc
privateinherited

single crystal time calibration offset electronics as vector uncertainty

Definition at line 109 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalElectronicsUnc

std::vector< float > v_calibrationCrystalElectronicsUnc
privateinherited

single crystal electronics calibration as vector uncertainty

Definition at line 100 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalEnergy

std::vector< float > v_calibrationCrystalEnergy
privateinherited

single crystal energy calibration as vector

Definition at line 103 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalEnergyUnc

std::vector< float > v_calibrationCrystalEnergyUnc
privateinherited

single crystal energy calibration as vector uncertainty

Definition at line 104 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalFlightTime

std::vector< float > v_calibrationCrystalFlightTime
privateinherited

single crystal time calibration TOF as vector

Definition at line 121 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalFlightTimeUnc

std::vector< float > v_calibrationCrystalFlightTimeUnc
privateinherited

single crystal time calibration TOF as vector uncertainty

Definition at line 122 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalTimeOffset

std::vector< float > v_calibrationCrystalTimeOffset
privateinherited

single crystal time calibration offset as vector

Definition at line 112 of file ECLDigitCalibratorModule.h.

◆ v_calibrationCrystalTimeOffsetUnc

std::vector< float > v_calibrationCrystalTimeOffsetUnc
privateinherited

single crystal time calibration offset as vector uncertainty

Definition at line 113 of file ECLDigitCalibratorModule.h.


The documentation for this class was generated from the following file: