Belle II Software development
BaseHardConstraint Class Referenceabstract

Abstract base class for constraints of kinematic fits. More...

#include <BaseHardConstraint.h>

Inheritance diagram for BaseHardConstraint:
BaseConstraint ParticleConstraint MassConstraint MomentumConstraint RecoilMassConstraint

Public Member Functions

virtual ~BaseHardConstraint ()
 Virtual destructor.
 
virtual void add1stDerivativesToMatrix (double *M, int idim) const
 Adds first order derivatives to global covariance matrix M.
 
virtual void add2ndDerivativesToMatrix (double *M, int idim, double lambda) const
 Adds second order derivatives to global covariance matrix M.
 
virtual void addToGlobalChi2DerVector (double *y, int idim, double lambda) const
 Add lambda times derivatives of chi squared to global derivative vector.
 
virtual double dirDer (double *p, double *w, int idim, double mu=1)
 Calculate directional derivative.
 
virtual double dirDerAbs (double *p, double *w, int idim, double mu=1)
 Calculate directional derivative for abs(c)
 
virtual bool secondDerivatives (int i, int j, double *derivatives) const =0
 Second derivatives with respect to the meta-variables of Fit objects i and j; result false if all derivatives are zero.
 
virtual bool firstDerivatives (int i, double *derivatives) const =0
 First derivatives with respect to the meta-variables of Fit objects i; result false if all derivatives are zero.
 
virtual int getVarBasis () const =0
 
virtual double getValue () const override=0
 Returns the value of the constraint.
 
virtual double getError () const override
 Returns the error on the value of the constraint.
 
virtual void getDerivatives (int idim, double der[]) const override=0
 Get first order derivatives.
 
virtual int getGlobalNum () const
 Accesses position of constraint in global constraint list.
 
virtual void setGlobalNum (int iglobal)
 Sets position of constraint in global constraint list.
 
virtual void printFirstDerivatives () const
 
virtual void printSecondDerivatives () const
 
virtual void test1stDerivatives ()
 
virtual void test2ndDerivatives ()
 
virtual double num1stDerivative (int ifo, int ilocal, double eps)
 Evaluates numerically the 1st derivative w.r.t. a parameter.
 
virtual double num2ndDerivative (int ifo1, int ilocal1, double eps1, int ifo2, int ilocal2, double eps2)
 Evaluates numerically the 2nd derivative w.r.t. 2 parameters.
 
virtual const char * getName () const
 Returns the name of the constraint.
 
void setName (const char *name_)
 Set object's name.
 
virtual std::ostream & print (std::ostream &os) const
 print object to ostream
 

Protected Types

typedef std::vector< BaseFitObject * > FitObjectContainer
 Vector of pointers to ParticleFitObjects.
 
typedef FitObjectContainer::iterator FitObjectIterator
 Iterator through vector of pointers to ParticleFitObjects.
 
typedef FitObjectContainer::const_iterator ConstFitObjectIterator
 Constant iterator through vector of pointers to ParticleFitObjects.
 

Protected Attributes

FitObjectContainer fitobjects
 The FitObjectContainer.
 
std::vector< double > derivatives
 The derivatives.
 
std::vector< int > flags
 The flags can be used to divide the FitObjectContainer into several subsets used for example to implement an equal mass constraint (see MassConstraint).
 
int globalNum
 Position of constraint in global constraint list.
 
char * name
 

Related Functions

(Note that these are not member functions.)

std::ostream & operator<< (std::ostream &os, const BaseConstraint &bc)
 Prints out a BaseConstraint, using its print method.
 

Detailed Description

Abstract base class for constraints of kinematic fits.

This class defines the minimal functionality any constraint class must provide. First of all a constraint should know on with particles (or FitObject) it is applied. Where as for example a constraint on the total transvese momentum takes into account all particles in the event, an invariant mass constraint usually applies only to a subset of particles.

The particle list is implemented as a vector containing pointers to objects derived from BaseFitObject and can be either set a whole (setFOList) or enlarged by adding a single BaseFitObject (addToFOList).

From the four–momenta of all concerned fit objects the constraint has to be able to calculate its current value (getValue). Constraints should be formulated such that a value of zero corresponds to a perfectly fulfilled constraint.

In order to find a solution to the constrained minimisation problem, fit algorithms usually need the first order derivatives of the constraint with respect to the fit parameters. Since many constraints can be most easily expressed in terms of E, px, py, pz, the constraints supply their derivatives w.r.t. these parameters. If a FitObject uses a different parametrisation, it is its own task to provide the additional derivatives of E, px, py, pz w.r.t. the parameters of the FitObject. Thus it is easily possible to use FitObjects with different kinds of parametrisations under the same constraint. Some fit algorithms also need the second derivatives of the constraint, i.e. the NewtonFitter.

First and second order derivatives of each constraint can be added directly to the global covariance matrix containing the derivatives of all constraints w.r.t. to all parameters (add1stDerivativesToMatrix, add2ndDerivativesToMatrix). This requires the constraint to know its position in the overall list of constraints (globalNum).

Author: Jenny List, Benno List Last update:

Date
2011/03/03 15:03:02

by:

Author
blist

Definition at line 75 of file BaseHardConstraint.h.

Member Typedef Documentation

◆ ConstFitObjectIterator

typedef FitObjectContainer::const_iterator ConstFitObjectIterator
protected

Constant iterator through vector of pointers to ParticleFitObjects.

Definition at line 175 of file BaseHardConstraint.h.

◆ FitObjectContainer

typedef std::vector<BaseFitObject*> FitObjectContainer
protected

Vector of pointers to ParticleFitObjects.

Definition at line 171 of file BaseHardConstraint.h.

◆ FitObjectIterator

typedef FitObjectContainer::iterator FitObjectIterator
protected

Iterator through vector of pointers to ParticleFitObjects.

Definition at line 173 of file BaseHardConstraint.h.

Constructor & Destructor Documentation

◆ BaseHardConstraint()

BaseHardConstraint ( )
inline

Definition at line 189 of file BaseHardConstraint.h.

190 : fitobjects(FitObjectContainer()), derivatives(std::vector <double> ()), flags(std::vector <int> ()), globalNum(0)
191 {
192 }
std::vector< double > derivatives
The derivatives.
int globalNum
Position of constraint in global constraint list.
FitObjectContainer fitobjects
The FitObjectContainer.
std::vector< BaseFitObject * > FitObjectContainer
Vector of pointers to ParticleFitObjects.
std::vector< int > flags
The flags can be used to divide the FitObjectContainer into several subsets used for example to imple...

Member Function Documentation

◆ add1stDerivativesToMatrix()

void add1stDerivativesToMatrix ( double *  M,
int  idim 
) const
virtual

Adds first order derivatives to global covariance matrix M.

Parameters
MGlobal covariance matrix, dimension at least idim x idim
idimFirst dimension of array der

Definition at line 37 of file BaseHardConstraint.cc.

38 {
39 double dgdpi[BaseDefs::MAXINTERVARS];
40 for (unsigned int i = 0; i < fitobjects.size(); ++i) {
41 const BaseFitObject* foi = fitobjects[i];
42 assert(foi);
43 if (firstDerivatives(i, dgdpi)) {
44 foi->addTo1stDerivatives(M, idim, dgdpi, getGlobalNum(), getVarBasis());
45 }
46 }
47 }
virtual int getGlobalNum() const
Accesses position of constraint in global constraint list.
virtual bool firstDerivatives(int i, double *derivatives) const =0
First derivatives with respect to the meta-variables of Fit objects i; result false if all derivative...

◆ add2ndDerivativesToMatrix()

void add2ndDerivativesToMatrix ( double *  M,
int  idim,
double  lambda 
) const
virtual

Adds second order derivatives to global covariance matrix M.

Calculates the second derivative of the constraint g w.r.t.

the various parameters, multiplies it by lambda and adds it to the global covariance matrix

in case of particlefitobject: We denote with P_i the 4-vector of the i-th ParticleFitObject, then

\[
  \frac{\partial ^2 g}{\partial a_k \partial a_l}
  = \sum_i \sum_j \frac{\partial ^2 g}{\partial P_i \partial P_j} \cdot
    \frac{\partial P_i}{\partial a_k} \cdot \frac{\partial P_j}{\partial a_l}
    + \sum_i \frac{\partial g}{\partial P_i} \cdot
       \frac{\partial^2 P_i}{\partial a_k \partial a_l}
\]

Here, $\frac{\partial P_i}{\partial a_k}$ is a $4 \times n_i$ Matrix, where $n_i$ is the number of parameters of FitObject i; Correspondingly, $\frac{\partial^2 P_i}{\partial a_k \partial a_l}$ is a $4 \times n_i \times n_i$ matrix. Also, $\frac{\partial ^2 g}{\partial P_i \partial P_j}$ is a $4\times 4$ matrix for a given i and j, and $\frac{\partial g}{\partial P_i}$ is a 4-vector (though not a Lorentz-vector!).

but here it's been generalised

First, treat the part

\[
   \frac{\partial ^2 g}{\partial P_i \partial P_j}  \cdot
    \frac{\partial P_i}{\partial a_k} \cdot \frac{\partial P_j}{\partial a_l}
\]

Second, treat the part

\[
\sum_i \frac{\partial g}{\partial P_i} \cdot
       \frac{\partial^2 P_i}{\partial a_k \partial a_l}
\]

Here, $\frac{\partial g}{\partial P_i}$ is a 4-vector, which we pass on to the FitObject

Parameters
MGlobal covariance matrix, dimension at least idim x idim
idimFirst dimension of array der
lambdaLagrange multiplier for this constraint

Definition at line 76 of file BaseHardConstraint.cc.

77 {
78
85 // Derivatives \f$\frac{\partial ^2 g}{\partial P_i \partial P_j}\f$ at fixed i, j
86 // d2GdPidPj[4*ii+jj] is derivative w.r.t. P_i,ii and P_j,jj, where ii=0,1,2,3 for E,px,py,pz
87 double d2GdPidPj[BaseDefs::MAXINTERVARS * BaseDefs::MAXINTERVARS];
88
89 // Derivatives \f$\frac {\partial P_i}{\partial a_k}\f$ for all i;
90 // k is local parameter number
91 // dPidAk[KMAX*4*i + 4*k + ii] is \f$\frac {\partial P_{i,ii}}{\partial a_k}\f$,
92 // with ii=0, 1, 2, 3 for E, px, py, pz
93 const int n = fitobjects.size();
94 auto* dPidAk = new double[n * BaseDefs::MAXPAR * BaseDefs::MAXINTERVARS];
95 bool* dPidAkval = new bool[n];
96
97 for (int i = 0; i < n; ++i) dPidAkval[i] = false;
98
99 // Derivatives \f$\frac{\partial ^2 g}{\partial P_i \partial a_l}\f$ at fixed i
100 // d2GdPdAl[4*l + ii] is \f$\frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l}\f$
101 double d2GdPdAl[static_cast<int>(BaseDefs::MAXINTERVARS) * BaseDefs::MAXPAR];
102 // Derivatives \f$\frac{\partial ^2 g}{\partial a_k \partial a_l}\f$
103 double d2GdAkdAl[BaseDefs::MAXPAR * BaseDefs::MAXPAR] = {0};
104
105 // Global parameter numbers: parglobal[BaseDefs::MAXPAR*i+klocal]
106 // is global parameter number of local parameter klocal of i-th Fit object
107 int* parglobal = new int[BaseDefs::MAXPAR * n];
108
109 for (int i = 0; i < n; ++i) {
110 const BaseFitObject* foi = fitobjects[i];
111 assert(foi);
112 for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
113 parglobal [BaseDefs::MAXPAR * i + klocal] = foi->getGlobalParNum(klocal);
114 }
115 }
116
117
118 for (int i = 0; i < n; ++i) {
119 const BaseFitObject* foi = fitobjects[i];
120 assert(foi);
121 for (int j = 0; j < n; ++j) {
122 const BaseFitObject* foj = fitobjects[j];
123 assert(foj);
124 if (secondDerivatives(i, j, d2GdPidPj)) {
125 if (!dPidAkval[i]) {
126 foi->getDerivatives(dPidAk + i * (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS),
127 static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS);
128 dPidAkval[i] = true;
129 }
130 if (!dPidAkval[j]) {
131 foj->getDerivatives(dPidAk + j * (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS),
132 static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS);
133 dPidAkval[j] = true;
134 }
135 // Now sum over E/px/Py/Pz for object j:
136 // \f[
137 // \frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l}
138 // = (sum_{j}) sum_{jj} frac{\partial ^2 g}{\partial P_{i,ii} \partial P_{j,jj}}
139 // \cdot \frac{\partial P_{j,jj}}{\partial a_l}
140 // \f]
141 // We're summing over jj here
142 for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
143 for (int ii = 0; ii < BaseDefs::MAXINTERVARS; ++ii) {
144 int ind1 = BaseDefs::MAXINTERVARS * ii;
145 int ind2 = (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS) * j + BaseDefs::MAXINTERVARS * llocal;
146 double& r = d2GdPdAl[BaseDefs::MAXINTERVARS * llocal + ii];
147 r = d2GdPidPj[ ind1] * dPidAk[ ind2]; // E
148 r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // px
149 r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // py
150 r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // pz
151 }
152 }
153 // Now sum over E/px/Py/Pz for object i, i.e. sum over ii:
154 // \f[
155 // \frac{\partial ^2 g}{\partial a_k \partial a_l}
156 // = \sum_{ii} \frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l} \cdot
157 // \frac{\partial P_{i,ii}}{\partial a_k}
158 // \f]
159 for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
160 for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
161 int ind1 = BaseDefs::MAXINTERVARS * llocal;
162 int ind2 = (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS) * i + BaseDefs::MAXINTERVARS * klocal;
163 double& r = d2GdAkdAl[BaseDefs::MAXPAR * klocal + llocal];
164 r = d2GdPdAl[ ind1] * dPidAk[ ind2]; //E
165 r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // px
166 r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // py
167 r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // pz
168 }
169 }
170 // Now expand the local parameter numbers to global ones
171 for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
172 int kglobal = parglobal [BaseDefs::MAXPAR * i + klocal];
173 for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
174 int lglobal = parglobal [BaseDefs::MAXPAR * j + llocal];
175 M [idim * kglobal + lglobal] += lambda * d2GdAkdAl[BaseDefs::MAXPAR * klocal + llocal];
176 }
177 }
178 }
179 }
180 }
190 double dgdpi[BaseDefs::MAXINTERVARS];
191 for (int i = 0; i < n; ++i) {
192 const BaseFitObject* foi = fitobjects[i];
193 assert(foi);
194 if (firstDerivatives(i, dgdpi)) {
195 foi->addTo2ndDerivatives(M, idim, lambda, dgdpi, getVarBasis());
196 }
197 }
198
199 delete[] dPidAk;
200 delete[] dPidAkval;
201 delete[] parglobal;
202 }
virtual bool secondDerivatives(int i, int j, double *derivatives) const =0
Second derivatives with respect to the meta-variables of Fit objects i and j; result false if all der...

◆ addToGlobalChi2DerVector()

void addToGlobalChi2DerVector ( double *  y,
int  idim,
double  lambda 
) const
virtual

Add lambda times derivatives of chi squared to global derivative vector.

Parameters
yVector of chi2 derivatives
idimVector size

Definition at line 204 of file BaseHardConstraint.cc.

205 {
206 double dgdpi[BaseDefs::MAXINTERVARS];
207 for (unsigned int i = 0; i < fitobjects.size(); ++i) {
208 const BaseFitObject* foi = fitobjects[i];
209 assert(foi);
210 if (firstDerivatives(i, dgdpi)) {
211 foi->addToGlobalChi2DerVector(y, idim, lambda, dgdpi, getVarBasis());
212 }
213 }
214 }

◆ dirDer()

double dirDer ( double *  p,
double *  w,
int  idim,
double  mu = 1 
)
virtual

Calculate directional derivative.

Parameters
pVector of direction
wWork vector
idimVector size
muoptional multiplier

Definition at line 232 of file BaseHardConstraint.cc.

233 {
234 double* pw, *pp;
235 for (pw = w; pw < w + idim; * (pw++) = 0);
236 addToGlobalChi2DerVector(w, idim, mu);
237 double result = 0;
238 for (pw = w, pp = p; pw < w + idim; result += *(pp++) * *(pw++));
239 return mu * result;
240 }
virtual void addToGlobalChi2DerVector(double *y, int idim, double lambda) const
Add lambda times derivatives of chi squared to global derivative vector.

◆ dirDerAbs()

double dirDerAbs ( double *  p,
double *  w,
int  idim,
double  mu = 1 
)
virtual

Calculate directional derivative for abs(c)

Parameters
pVector of direction
wWork vector
idimVector size
muoptional multiplier

Definition at line 242 of file BaseHardConstraint.cc.

243 {
244 double val = getValue();
245 if (val == 0) return mu * std::fabs(dirDer(p, w, idim, 1));
246 else if (val > 0) return mu * dirDer(p, w, idim, 1);
247 else return -mu * dirDer(p, w, idim, 1);
248 }
virtual double getValue() const override=0
Returns the value of the constraint.
virtual double dirDer(double *p, double *w, int idim, double mu=1)
Calculate directional derivative.

◆ firstDerivatives()

virtual bool firstDerivatives ( int  i,
double *  derivatives 
) const
pure virtual

First derivatives with respect to the meta-variables of Fit objects i; result false if all derivatives are zero.

Parameters
inumber of 1st FitObject
derivativesThe result 4-vector

Implemented in MassConstraint, MomentumConstraint, and RecoilMassConstraint.

◆ getDerivatives()

virtual void getDerivatives ( int  idim,
double  der[] 
) const
overridepure virtual

Get first order derivatives.

Call this with a predefined array "der" with the necessary number of entries!

Parameters
idimFirst dimension of the array
derArray of derivatives, at least idim x idim

Implements BaseConstraint.

Implemented in MassConstraint, MomentumConstraint, and RecoilMassConstraint.

◆ getError()

double getError ( ) const
overridevirtual

Returns the error on the value of the constraint.

Reimplemented from BaseConstraint.

Definition at line 217 of file BaseHardConstraint.cc.

218 {
219 double dgdpi[BaseDefs::MAXINTERVARS];
220 double error2 = 0;
221 for (unsigned int i = 0; i < fitobjects.size(); ++i) {
222 const BaseFitObject* foi = fitobjects[i];
223 assert(foi);
224 if (firstDerivatives(i, dgdpi)) {
225 error2 += foi->getError2(dgdpi, getVarBasis());
226 }
227 }
228 return std::sqrt(std::abs(error2));
229 }

◆ getGlobalNum()

virtual int getGlobalNum ( ) const
inlinevirtual

Accesses position of constraint in global constraint list.

Definition at line 137 of file BaseHardConstraint.h.

138 {return globalNum;}

◆ getName()

const char * getName ( ) const
virtualinherited

Returns the name of the constraint.

Definition at line 56 of file BaseConstraint.cc.

57 {
58 return name;
59 }

◆ getValue()

virtual double getValue ( ) const
overridepure virtual

Returns the value of the constraint.

Implements BaseConstraint.

Implemented in MassConstraint, MomentumConstraint, and RecoilMassConstraint.

◆ num1stDerivative()

double num1stDerivative ( int  ifo,
int  ilocal,
double  eps 
)
virtual

Evaluates numerically the 1st derivative w.r.t. a parameter.

Parameters
ifoNumber of FitObject
ilocalLocal parameter number
epsvariation of local parameter

Definition at line 307 of file BaseHardConstraint.cc.

308 {
309 BaseFitObject* fo = fitobjects[ifo];
310 assert(fo);
311 double save = fo->getParam(ilocal);
312 fo->setParam(ilocal, save + eps);
313 double v1 = getValue();
314 fo->setParam(ilocal, save - eps);
315 double v2 = getValue();
316 double result = (v1 - v2) / (2 * eps);
317 fo->setParam(ilocal, save);
318 return result;
319 }
const std::vector< double > v2
MATLAB generated random vector.
const std::vector< double > v1
MATLAB generated random vector.

◆ num2ndDerivative()

double num2ndDerivative ( int  ifo1,
int  ilocal1,
double  eps1,
int  ifo2,
int  ilocal2,
double  eps2 
)
virtual

Evaluates numerically the 2nd derivative w.r.t. 2 parameters.

Parameters
ifo1Number of 1st FitObject
ilocal11st local parameter number
eps1variation of 1st local parameter
ifo2Number of 1st FitObject
ilocal21st local parameter number
eps2variation of 2nd local parameter

Definition at line 321 of file BaseHardConstraint.cc.

323 {
324 double result;
325
326 if (ifo1 == ifo2 && ilocal1 == ilocal2) {
327 BaseFitObject* fo = fitobjects[ifo1];
328 assert(fo);
329 double save = fo->getParam(ilocal1);
330 double v0 = getValue();
331 fo->setParam(ilocal1, save + eps1);
332 double v1 = getValue();
333 fo->setParam(ilocal1, save - eps1);
334 double v2 = getValue();
335 result = (v1 + v2 - 2 * v0) / (eps1 * eps1);
336 fo->setParam(ilocal1, save);
337 } else {
338 BaseFitObject* fo1 = fitobjects[ifo1];
339 assert(fo1);
340 BaseFitObject* fo2 = fitobjects[ifo2];
341 assert(fo2);
342 double save1 = fo1->getParam(ilocal1);
343 double save2 = fo2->getParam(ilocal2);
344 fo1->setParam(ilocal1, save1 + eps1);
345 fo2->setParam(ilocal2, save2 + eps2);
346 double v11 = getValue();
347 fo2->setParam(ilocal2, save2 - eps2);
348 double v12 = getValue();
349 fo1->setParam(ilocal1, save1 - eps1);
350 double v22 = getValue();
351 fo2->setParam(ilocal2, save2 + eps2);
352 double v21 = getValue();
353 result = (v11 + v22 - v12 - v21) / (4 * eps1 * eps2);
354 fo1->setParam(ilocal1, save1);
355 fo2->setParam(ilocal2, save2);
356 }
357 return result;
358 }

◆ print()

std::ostream & print ( std::ostream &  os) const
virtualinherited

print object to ostream

Parameters
osThe output stream

Definition at line 76 of file BaseConstraint.cc.

77 {
78 os << getName() << "=" << getValue();
79 return os;
80 }
virtual double getValue() const =0
Returns the value of the constraint function.
virtual const char * getName() const
Returns the name of the constraint.

◆ printFirstDerivatives()

void printFirstDerivatives ( ) const
virtual

Definition at line 360 of file BaseHardConstraint.cc.

361 {
362
363 B2INFO("BaseHardConstraint::printFirstDerivatives " << fitobjects.size());
364
365 double dgdpi[BaseDefs::MAXINTERVARS];
366 for (unsigned int i = 0; i < fitobjects.size(); ++i) {
367 const BaseFitObject* foi = fitobjects[i];
368 assert(foi);
369 if (firstDerivatives(i, dgdpi)) {
370 B2INFO("first derivs for obj " << i << " : ");
371 for (double j : dgdpi)
372 B2INFO(j << " ");
373 }
374 }
375
376 return;
377 }

◆ printSecondDerivatives()

void printSecondDerivatives ( ) const
virtual

Definition at line 379 of file BaseHardConstraint.cc.

380 {
381
382 double d2GdPidPj[BaseDefs::MAXINTERVARS * BaseDefs::MAXINTERVARS];
383
384 int n = fitobjects.size();
385
386 for (int i = 0; i < n; ++i) {
387 const BaseFitObject* foi = fitobjects[i];
388 assert(foi);
389 for (int j = 0; j < n; ++j) {
390 const BaseFitObject* foj = fitobjects[j];
391 assert(foj);
392 if (secondDerivatives(i, j, d2GdPidPj)) {
393
394 B2INFO("second derivs for objs " << i << " " << j);
395
396 int k(0);
397 for (int k1 = 0; k1 < BaseDefs::MAXINTERVARS; k1++) {
398 for (int k2 = 0; k2 < BaseDefs::MAXINTERVARS; k2++) {
399 B2INFO(d2GdPidPj[k++] << " ");
400 }
401 }
402 }
403 }
404 }
405
406 return;
407 }

◆ secondDerivatives()

virtual bool secondDerivatives ( int  i,
int  j,
double *  derivatives 
) const
pure virtual

Second derivatives with respect to the meta-variables of Fit objects i and j; result false if all derivatives are zero.

Parameters
inumber of 1st FitObject
jnumber of 2nd FitObject
derivativesThe result 4x4 matrix

Implemented in MassConstraint, MomentumConstraint, and RecoilMassConstraint.

◆ setGlobalNum()

virtual void setGlobalNum ( int  iglobal)
inlinevirtual

Sets position of constraint in global constraint list.

Parameters
iglobalGlobal constraint number

Definition at line 140 of file BaseHardConstraint.h.

142 {globalNum = iglobal;}

◆ setName()

void setName ( const char *  name_)
inherited

Set object's name.

Definition at line 61 of file BaseConstraint.cc.

62 {
63 if (name_ == nullptr) return;
64 size_t l = strlen(name_);
65 if (name) delete[] name;
66 name = new char[l + 1];
67 strcpy(name, name_);
68 }

◆ test1stDerivatives()

void test1stDerivatives ( )
virtual

Definition at line 251 of file BaseHardConstraint.cc.

252 {
253 B2INFO("BaseConstraint::test1stDerivatives for " << getName());
254 double y[100];
255 for (double& i : y) i = 0;
256 addToGlobalChi2DerVector(y, 100, 1);
257 double eps = 0.00001;
258 for (unsigned int ifo = 0; ifo < fitobjects.size(); ++ifo) {
259 BaseFitObject* fo = fitobjects[ifo];
260 assert(fo);
261 for (int ilocal = 0; ilocal < fo->getNPar(); ++ilocal) {
262 int iglobal = fo->getGlobalParNum(ilocal);
263 double calc = y[iglobal];
264 double num = num1stDerivative(ifo, ilocal, eps);
265 B2INFO("fo: " << fo->getName() << " par " << ilocal << "/"
266 << iglobal << " (" << fo->getParamName(ilocal)
267 << ") calc: " << calc << " - num: " << num << " = " << calc - num);
268 }
269 }
270 }
virtual double num1stDerivative(int ifo, int ilocal, double eps)
Evaluates numerically the 1st derivative w.r.t. a parameter.

◆ test2ndDerivatives()

void test2ndDerivatives ( )
virtual

Definition at line 272 of file BaseHardConstraint.cc.

273 {
274 B2INFO("BaseConstraint::test2ndDerivatives for " << getName());
275 const int idim = 100;
276 auto* M = new double[idim * idim];
277 for (int i = 0; i < idim * idim; ++i) M[i] = 0;
278 add2ndDerivativesToMatrix(M, idim, 1);
279 double eps = 0.0001;
280 B2INFO("eps=" << eps);
281
282 for (unsigned int ifo1 = 0; ifo1 < fitobjects.size(); ++ifo1) {
283 BaseFitObject* fo1 = fitobjects[ifo1];
284 assert(fo1);
285 for (unsigned int ifo2 = ifo1; ifo2 < fitobjects.size(); ++ifo2) {
286 BaseFitObject* fo2 = fitobjects[ifo2];
287 assert(fo2);
288 for (int ilocal1 = 0; ilocal1 < fo1->getNPar(); ++ilocal1) {
289 int iglobal1 = fo1->getGlobalParNum(ilocal1);
290 for (int ilocal2 = (ifo1 == ifo2 ? ilocal1 : 0); ilocal2 < fo2->getNPar(); ++ilocal2) {
291 int iglobal2 = fo2->getGlobalParNum(ilocal2);
292 double calc = M[idim * iglobal1 + iglobal2];
293 double num = num2ndDerivative(ifo1, ilocal1, eps, ifo2, ilocal2, eps);
294 B2INFO("fo1: " << fo1->getName() << " par " << ilocal1 << "/"
295 << iglobal1 << " (" << fo1->getParamName(ilocal1)
296 << "), fo2: " << fo2->getName() << " par " << ilocal2 << "/"
297 << iglobal2 << " (" << fo2->getParamName(ilocal2)
298 << ") calc: " << calc << " - num: " << num << " = " << calc - num);
299 }
300 }
301 }
302 }
303 delete[] M;
304 }
virtual void add2ndDerivativesToMatrix(double *M, int idim, double lambda) const
Adds second order derivatives to global covariance matrix M.
virtual double num2ndDerivative(int ifo1, int ilocal1, double eps1, int ifo2, int ilocal2, double eps2)
Evaluates numerically the 2nd derivative w.r.t. 2 parameters.

Friends And Related Function Documentation

◆ operator<<()

std::ostream & operator<< ( std::ostream &  os,
const BaseConstraint bc 
)
related

Prints out a BaseConstraint, using its print method.

Parameters
osThe output stream
bcThe object to print

Definition at line 114 of file BaseConstraint.h.

117 {
118 return bc.print(os);
119 }

Member Data Documentation

◆ derivatives

std::vector<double> derivatives
protected

The derivatives.

Definition at line 179 of file BaseHardConstraint.h.

◆ fitobjects

FitObjectContainer fitobjects
protected

The FitObjectContainer.

Definition at line 177 of file BaseHardConstraint.h.

◆ flags

std::vector<int> flags
protected

The flags can be used to divide the FitObjectContainer into several subsets used for example to implement an equal mass constraint (see MassConstraint).

Definition at line 182 of file BaseHardConstraint.h.

◆ globalNum

int globalNum
protected

Position of constraint in global constraint list.

Definition at line 185 of file BaseHardConstraint.h.

◆ name

char* name
protectedinherited

Definition at line 108 of file BaseConstraint.h.


The documentation for this class was generated from the following files: