10combined_to_pxd_ckf_mva_training
11-----------------------------------------
16This python script is used for the training and validation of the classifiers of
17the three MVA-based state filters and one result filter of the ToPXDCKF.
18This CKF extraplates tracks found in CDC and SVD into the PXD and adds PXD hits
19using a combinatorial tree search and a Kalman filter based track fit in each step.
21To avoid mistakes, b2luigi is used to create a task chain for a combined training and
22validation of all classifiers.
24The order of the b2luigi tasks in this script is as follows (top to bottom):
25* Two tasks to create input samples for training and testing (``GenerateSimTask`` and
26``SplitNMergeSimTask``). The ``SplitNMergeSimTask`` takes a number of events to be
27generated and a number of events per task to reduce runtime. It then divides the total
28number of events by the number of events per task and creates as ``GenerateSimTask`` as
29needed, each with a specific random seed, so that in the end the total number of
30training and testing events are simulated. The individual files are then combined
31by the SplitNMergeSimTask into one file each for training and testing.
32* The ``StateRecordingTask`` writes out the data required for training the state
34* The ``CKFStateFilterTeacherTask`` trains the state filter MVAs, using FastBDT by
35default, with a given set of options.
36* The ``ResultRecordingTask`` writes out the data used for the training of the result
37filter MVA. This task requires that the state filters have been trained before.
38* The ``CKFResultFilterTeacherTask`` trains the MVA, FastBDT per default, with a
39given set of FastBDT options. This requires that the result filter records have
40been created with the ``ResultRecordingTask``.
41* The ``ValidationAndOptimisationTask`` uses the trained weight files and cut values
42provided to run the tracking chain with the weight file under test, and also
43runs the tracking validation.
44* Finally, the ``MainTask`` is the "brain" of the script. It invokes the
45``ValidationAndOptimisationTask`` with the different combinations of FastBDT options
46and cut values on the MVA classifier output.
48Due to the dependencies, the calls of the task are reversed. The MainTask
49calls the ``ValidationAndOptimisationTask`` with different FastBDT options and cut
50values, and the ``ValidationAndOptimisationTask`` itself calls the required teacher,
51training, and simulation tasks.
53Each combination of FastBDT options and state filter cut values and candidate selection
54is used to train the result filter, which includes that the ``ResultRecordingTask``
55is executed multiple times with different combinations of FastBDT options and cut value
56and candidate selection.
58b2luigi: Understanding the steering file
59~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
61All trainings and validations are done in the correct order in this steering
62file. For the purpose of creating a dependency graph, the `b2luigi
63<https://b2luigi.readthedocs.io>`_ python package is used, which extends the
64`luigi <https://luigi.readthedocs.io>`_ package developed by spotify.
66Each task that has to be done is represented by a special class, which defines
67which defines parameters, output files and which other tasks with which
68parameters it depends on. For example a teacher task, which runs
69``basf2_mva_teacher.py`` to train the classifier, depends on a data collection
70task which runs a reconstruction and writes out track-wise variables into a root
71file
for training. An evaluation/validation task
for testing the classifier
72requires both the teacher task,
as it needs the weightfile to be present,
and
73also a data collection task, because it needs a dataset
for testing classifier.
75The final task that defines which tasks need to be done
for the steering file to
76finish
is the ``MainTask``. When you only want to run parts of the
77training/validation pipeline, you can comment out requirements
in the Master
78task
or replace them by lower-level tasks during debugging.
83This steering file relies on b2luigi_
for task scheduling. It can be installed
86 python3 -m pip install [--user] b2luigi
88Use the ``--user`` option
if you have
not rights to install python packages into
89your externals (e.g. because you are using cvmfs)
and install them
in
90``$HOME/.local`` instead.
95Instead of command line arguments, the b2luigi script
is configured via a
96``settings.json`` file. Open it
in your favorite text editor
and modify it to
97fit to your requirements.
102You can test the b2luigi without running it via::
104 python3 combined_to_pxd_ckf_mva_training.py --dry-run
105 python3 combined_to_pxd_ckf_mva_training.py --show-output
107This will show the outputs
and show potential errors
in the definitions of the
108luigi task dependencies. To run the the steering file
in normal (local) mode,
111 python3 combined_to_pxd_ckf_mva_training.py
113One can use the interactive luigi web interface via the central scheduler
114which visualizes the task graph
while it
is running. Therefore, the scheduler
115daemon ``luigid`` has to run
in the background, which
is located
in
116``~/.local/bin/luigid``
in case b2luigi had been installed
with ``--user``. For
121Then, execute your steering (e.g.
in another terminal)
with::
123 python3 combined_to_pxd_ckf_mva_training.py --scheduler-port 8886
125To view the web interface, open your webbrowser enter into the url bar::
129If you don
't run the steering file on the same machine on which you run your webbrowser, you have two options:
131 1. Run both the steering file and ``luigid`` remotely
and use
132 ssh-port-forwarding to your local host. Therefore, run on your local
135 ssh -N -f -L 8886:localhost:8886 <remote_user>@<remote_host>
137 2. Run the ``luigid`` scheduler locally
and use the ``--scheduler-host <your
138 local host>`` argument when calling the steering file
140Accessing the results / output files
141~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
143All output files are stored
in a directory structure
in the ``result_path`` set
in
144``settings.json``. The directory tree encodes the used b2luigi parameters. This
145ensures reproducibility
and makes parameter searches easy. Sometimes, it
is hard to
146find the relevant output files. You can view the whole directory structure by
147running ``tree <result_path>``. Ise the unix ``find`` command to find the files
148that interest you, e.g.::
150 find <result_path> -name
"*.root"
158from tracking import add_track_finding
159from tracking.path_utils import add_hit_preparation_modules
160from tracking.harvesting_validation.combined_module import CombinedTrackingValidationModule
164from ckf_training import my_basf2_mva_teacher, create_fbdt_option_string
165from tracking_mva_filter_payloads.write_tracking_mva_filter_payloads_to_db import write_tracking_mva_filter_payloads_to_db
167# wrap python modules that are used here but not in the externals into a try except block
168install_helpstring_formatter = ("\nCould not find {module} python module.Try installing it via\n"
169 " python3 -m pip install [--user] {module}\n")
172 from b2luigi.core.utils
import create_output_dirs
173 from b2luigi.basf2_helper
import Basf2PathTask, Basf2Task
174except ModuleNotFoundError:
175 print(install_helpstring_formatter.format(module=
"b2luigi"))
179class GenerateSimTask(Basf2PathTask):
181 Generate simulated Monte Carlo with background overlay.
183 Make sure to use different ``random_seed`` parameters
for the training data
184 format the classifier trainings
and for the test data
for the respective
185 evaluation/validation tasks.
189 experiment_number = b2luigi.IntParameter()
192 random_seed = b2luigi.Parameter()
194 n_events = b2luigi.IntParameter()
196 bkgfiles_dir = b2luigi.Parameter(
207 Create output file name depending on number of events and production
208 mode that
is specified
in the random_seed string.
210 :param n_events: Number of events to simulate.
211 :param random_seed: Random seed to use
for the simulation to create independent samples.
215 if random_seed
is None:
217 return "generated_mc_N" + str(n_events) +
"_" + random_seed +
".root"
221 Generate list of output files that the task should produce.
222 The task is considered finished
if and only
if the outputs all exist.
226 def create_path(self):
228 Create basf2 path to process with event generation
and simulation.
231 path = basf2.create_path()
235 path.add_module(
"EvtGenInput")
257 Generate simulated Monte Carlo with background overlay.
259 Make sure to use different ``random_seed`` parameters
for the training data
260 format the classifier trainings
and for the test data
for the respective
261 evaluation/validation tasks.
265 experiment_number = b2luigi.IntParameter()
268 random_seed = b2luigi.Parameter()
270 n_events = b2luigi.IntParameter()
272 bkgfiles_dir = b2luigi.Parameter(
283 Create output file name depending on number of events and production
284 mode that
is specified
in the random_seed string.
286 :param n_events: Number of events to simulate.
287 :param random_seed: Random seed to use
for the simulation to create independent samples.
291 if random_seed
is None:
293 return "generated_mc_N" + str(n_events) +
"_" + random_seed +
".root"
297 Generate list of output files that the task should produce.
298 The task is considered finished
if and only
if the outputs all exist.
304 This task requires several GenerateSimTask to be finished so that he required number of events is created.
306 n_events_per_task = MainTask.n_events_per_task
307 quotient, remainder = divmod(self.n_events, n_events_per_task)
308 for i
in range(quotient):
311 num_processes=MainTask.num_processes,
312 random_seed=self.
random_seed +
'_' + str(i).zfill(3),
313 n_events=n_events_per_task,
319 num_processes=MainTask.num_processes,
320 random_seed=self.
random_seed +
'_' + str(quotient).zfill(3),
325 @b2luigi.on_temporary_files
328 When all GenerateSimTasks finished, merge the output.
330 create_output_dirs(self)
332 file_list = [item for sublist
in self.get_input_file_names().values()
for item
in sublist]
333 print(
"Merge the following files:")
335 cmd = [
"b2file-merge",
"-f"]
336 args = cmd + [self.get_output_file_name(self.
output_file_name())] + file_list
337 subprocess.check_call(args)
338 print(
"Finished merging. Now remove the input files to save space.")
340 for tempfile
in file_list:
341 args = cmd2 + [tempfile]
342 subprocess.check_call(args)
347 Record the data for the three state filters
for the ToPXDCKF.
349 This task requires that the events used
for training have been simulated before, which
is done using the
350 ``SplitMergeSimTask``.
353 experiment_number = b2luigi.IntParameter()
356 random_seed = b2luigi.Parameter()
358 n_events = b2luigi.IntParameter()
361 layer = b2luigi.IntParameter()
365 Generate list of output files that the task should produce.
366 The task is considered finished
if and only
if the outputs all exist.
368 for record_fname
in [
"records1.root",
"records2.root",
"records3.root"]:
369 yield self.add_to_output(record_fname)
373 This task only requires that the input files have been created.
384 Create a path for the recording. To record the data
for the PXD state filters, CDC+SVD tracks are required,
and these
385 must be truth matched before. The data have to recorded
for each layer of the PXD, i.e. layers 1
and 2, but also an
388 :param layer: The layer
for which the data are recorded.
389 :param records1_fname: Name of the records1 file.
390 :param records2_fname: Name of the records2 file.
391 :param records3_fname: Name of the records3 file.
393 path = basf2.create_path()
396 file_list = [fname
for sublist
in self.get_input_file_names().values()
397 for fname
in sublist
if "generated_mc_N" in fname
and "training" in fname
and fname.endswith(
".root")]
398 path.add_module(
"RootInput", inputFileNames=file_list)
400 path.add_module(
"Gearbox")
401 path.add_module(
"Geometry")
402 path.add_module(
"SetupGenfitExtrapolation")
404 add_hit_preparation_modules(path, components=[
"SVD",
"PXD"])
406 add_track_finding(path, reco_tracks=
"CDCSVDRecoTracks", components=[
"CDC",
"SVD"], prune_temporary_tracks=
False)
408 path.add_module(
'TrackFinderMCTruthRecoTracks',
409 RecoTracksStoreArrayName=
"MCRecoTracks",
415 path.add_module(
"MCRecoTracksMatcher", UsePXDHits=
False, UseSVDHits=
True, UseCDCHits=
True,
416 mcRecoTracksStoreArrayName=
"MCRecoTracks",
417 prRecoTracksStoreArrayName=
"CDCSVDRecoTracks")
418 path.add_module(
"DAFRecoFitter", recoTracksStoreArrayName=
"CDCSVDRecoTracks")
420 path.add_module(
"ToPXDCKF",
421 inputRecoTrackStoreArrayName=
"CDCSVDRecoTracks",
422 outputRecoTrackStoreArrayName=
"RecoTracks",
423 outputRelationRecoTrackStoreArrayName=
"CDCSVDRecoTracks",
424 hitFilter=
"angulardistance",
425 seedFilter=
"angulardistance",
429 relationCheckForDirection=
"backward",
431 writeOutDirection=
"backward",
433 firstHighFilter=
"truth",
434 firstEqualFilter=
"recording",
435 firstEqualFilterParameters={
"treeName":
"records1",
"rootFileName": records1_fname,
"returnWeight": 1.0},
436 firstLowFilter=
"none",
437 firstHighUseNStates=0,
438 firstToggleOnLayer=layer,
440 advanceHighFilter=
"advance",
442 secondHighFilter=
"truth",
443 secondEqualFilter=
"recording",
444 secondEqualFilterParameters={
"treeName":
"records2",
"rootFileName": records2_fname,
"returnWeight": 1.0},
445 secondLowFilter=
"none",
446 secondHighUseNStates=0,
447 secondToggleOnLayer=layer,
449 updateHighFilter=
"fit",
451 thirdHighFilter=
"truth",
452 thirdEqualFilter=
"recording",
453 thirdEqualFilterParameters={
"treeName":
"records3",
"rootFileName": records3_fname},
454 thirdLowFilter=
"none",
455 thirdHighUseNStates=0,
456 thirdToggleOnLayer=layer,
461 enableOverlapResolving=
False)
465 def create_path(self):
467 Create basf2 path to process with event generation
and simulation.
471 records1_fname=self.get_output_file_name(
"records1.root"),
472 records2_fname=self.get_output_file_name(
"records2.root"),
473 records3_fname=self.get_output_file_name(
"records3.root"),
479 A teacher task runs the basf2 mva teacher on the training data provided by a
480 data collection task.
482 In this task the three state filters are trained, each with the corresponding recordings
from the different layers.
483 It will be executed
for each FastBDT option defined
in the MainTask.
487 experiment_number = b2luigi.IntParameter()
490 random_seed = b2luigi.Parameter()
492 n_events = b2luigi.IntParameter()
494 fast_bdt_option_state_filter = b2luigi.ListParameter(
496 hashed=True, default=[50, 8, 3, 0.1]
500 filter_number = b2luigi.IntParameter()
502 training_target = b2luigi.Parameter(
509 exclude_variables = b2luigi.ListParameter(
511 hashed=
True, default=[]
517 Name of weightfile that is created by the teacher task.
519 :param fast_bdt_option: FastBDT option that
is used to train this MVA
520 :param filter_number: Filter number (first=1, second=2, third=3) to be trained
522 if fast_bdt_option
is None:
524 fast_bdt_string = create_fbdt_option_string(fast_bdt_option)
526 if filter_number
is None:
528 weightfile_name = f
"trk_ToPXDStateFilter_{filter_number}" + fast_bdt_string
529 return weightfile_name
533 This task requires that the recordings for the state filters.
535 for layer
in [1, 2, 3]:
540 random_seed=
"training",
546 Generate list of output files that the task should produce.
547 The task is considered finished
if and only
if the outputs all exist.
553 Use basf2_mva teacher to create MVA weightfile from collected training
556 This
is the main process that
is dispatched by the ``run`` method that
557 is inherited
from ``Basf2Task``.
559 records_files = self.get_input_file_names(f"records{self.filter_number}.root")
561 tree_name = f
"records{self.filter_number}"
562 print(f
"Processed records files: {records_files},\nfeature tree name: {tree_name}")
564 my_basf2_mva_teacher(
565 records_files=records_files,
567 weightfile_identifier=weightfile_identifier,
572 basf2_mva.download(weightfile_identifier, self.get_output_file_name(weightfile_identifier +
'.root'))
577 Task to record data for the final result filter. This requires trained state filters.
578 The cuts on the state filter classifiers are set to rather low values to ensure that all signal
is contained
in the recorded
579 file. Also, the values
for XXXXXHighUseNStates are chosen conservatively, i.e. rather on the high side.
583 experiment_number = b2luigi.IntParameter()
586 random_seed = b2luigi.Parameter()
588 n_events_training = b2luigi.IntParameter()
590 fast_bdt_option_state_filter = b2luigi.ListParameter(
592 hashed=True, default=[200, 8, 3, 0.1]
596 result_filter_records_name = b2luigi.Parameter()
599 basf2.conditions.prepend_testing_payloads(
"localdb/database.txt")
603 Generate list of output files that the task should produce.
604 The task is considered finished
if and only
if the outputs all exist.
610 This task requires that the training SplitMergeSimTask is finished,
as well
as that the state filters are trained using
611 the CKFStateFilterTeacherTask..
619 filter_numbers = [1, 2, 3]
620 for filter_number
in filter_numbers:
622 CKFStateFilterTeacherTask,
626 filter_number=filter_number,
632 Create a path for the recording of the result filter. This file
is then used to train the result filter.
634 :param result_filter_records_name: Name of the recording file.
637 path = basf2.create_path()
640 file_list = [fname
for sublist
in self.get_input_file_names().values()
641 for fname
in sublist
if "generated_mc_N" in fname
and "training" in fname
and fname.endswith(
".root")]
642 path.add_module(
"RootInput", inputFileNames=file_list)
644 path.add_module(
"Gearbox")
645 path.add_module(
"Geometry")
646 path.add_module(
"SetupGenfitExtrapolation")
648 add_hit_preparation_modules(path, components=[
"SVD",
"PXD"])
650 add_track_finding(path, reco_tracks=
"CDCSVDRecoTracks", components=[
"CDC",
"SVD"], prune_temporary_tracks=
False)
652 path.add_module(
'TrackFinderMCTruthRecoTracks',
653 RecoTracksStoreArrayName=
"MCRecoTracks",
659 path.add_module(
"MCRecoTracksMatcher", UsePXDHits=
False, UseSVDHits=
True, UseCDCHits=
True,
660 mcRecoTracksStoreArrayName=
"MCRecoTracks",
661 prRecoTracksStoreArrayName=
"CDCSVDRecoTracks")
662 path.add_module(
"DAFRecoFitter", recoTracksStoreArrayName=
"CDCSVDRecoTracks")
669 f
"trk_ToPXDStateFilter_1_Parameter{fast_bdt_string}",
671 f
"trk_ToPXDStateFilter_1{fast_bdt_string}",
675 f
"trk_ToPXDStateFilter_2_Parameter{fast_bdt_string}",
677 f
"trk_ToPXDStateFilter_2{fast_bdt_string}",
681 f
"trk_ToPXDStateFilter_3_Parameter{fast_bdt_string}",
683 f
"trk_ToPXDStateFilter_3{fast_bdt_string}",
686 basf2.conditions.prepend_testing_payloads(
"localdb/database.txt")
687 first_high_filter_parameters = {
"DBPayloadName": f
"trk_ToPXDStateFilter_1_Parameter{fast_bdt_string}",
688 "direction":
"backward"}
689 second_high_filter_parameters = {
"DBPayloadName": f
"trk_ToPXDStateFilter_2_Parameter{fast_bdt_string}"}
690 third_high_filter_parameters = {
"DBPayloadName": f
"trk_ToPXDStateFilter_3_Parameter{fast_bdt_string}"}
692 path.add_module(
"ToPXDCKF",
693 inputRecoTrackStoreArrayName=
"CDCSVDRecoTracks",
694 outputRecoTrackStoreArrayName=
"RecoTracks",
695 outputRelationRecoTrackStoreArrayName=
"CDCSVDRecoTracks",
697 relationCheckForDirection=
"backward",
699 writeOutDirection=
"backward",
701 firstHighFilter=
"mva",
702 firstHighFilterParameters=first_high_filter_parameters,
703 firstHighUseNStates=10,
705 advanceHighFilter=
"advance",
707 secondHighFilter=
"mva",
708 secondHighFilterParameters=second_high_filter_parameters,
709 secondHighUseNStates=10,
711 updateHighFilter=
"fit",
713 thirdHighFilter=
"mva",
714 thirdHighFilterParameters=third_high_filter_parameters,
715 thirdHighUseNStates=10,
718 filterParameters={
"rootFileName": result_filter_records_name},
721 enableOverlapResolving=
True)
725 def create_path(self):
727 Create basf2 path to process with event generation
and simulation.
736 A teacher task runs the basf2 mva teacher on the training data for the result filter.
740 experiment_number = b2luigi.IntParameter()
743 random_seed = b2luigi.Parameter()
745 n_events = b2luigi.IntParameter()
747 fast_bdt_option_state_filter = b2luigi.ListParameter(
749 hashed=True, default=[50, 8, 3, 0.1]
753 fast_bdt_option_result_filter = b2luigi.ListParameter(
755 hashed=
True, default=[200, 8, 3, 0.1]
759 result_filter_records_name = b2luigi.Parameter()
761 training_target = b2luigi.Parameter(
768 exclude_variables = b2luigi.ListParameter(
770 hashed=
True, default=[]
776 Name of weightfile that is created by the teacher task.
778 :param fast_bdt_option: FastBDT option that
is used to train this MVA
780 if fast_bdt_option
is None:
782 fast_bdt_string = create_fbdt_option_string(fast_bdt_option)
783 weightfile_name =
"trk_ToPXDResultFilter" + fast_bdt_string
784 return weightfile_name
788 Generate list of luigi Tasks that this Task depends on.
800 Generate list of output files that the task should produce.
801 The task is considered finished
if and only
if the outputs all exist.
807 Use basf2_mva teacher to create MVA weightfile from collected training
810 This
is the main process that
is dispatched by the ``run`` method that
811 is inherited
from ``Basf2Task``.
814 tree_name = "records"
815 print(f
"Processed records files for result filter training: {records_files},\nfeature tree name: {tree_name}")
817 my_basf2_mva_teacher(
818 records_files=records_files,
825 basf2_mva.download(weightfile_identifier, self.get_output_file_name(weightfile_identifier +
".root"))
830 Validate the performance of the trained filters by trying various combinations of FastBDT options, as well
as cut values
for
831 the states, the number of best candidates kept after each filter,
and similar
for the result filter.
834 experiment_number = b2luigi.IntParameter()
836 n_events_training = b2luigi.IntParameter()
838 fast_bdt_option_state_filter = b2luigi.ListParameter(
840 hashed=
True, default=[200, 8, 3, 0.1]
844 fast_bdt_option_result_filter = b2luigi.ListParameter(
846 hashed=
True, default=[200, 8, 3, 0.1]
850 n_events_testing = b2luigi.IntParameter()
852 state_filter_cut = b2luigi.FloatParameter()
854 use_n_best_states = b2luigi.IntParameter()
856 result_filter_cut = b2luigi.FloatParameter()
858 use_n_best_results = b2luigi.IntParameter()
861 basf2.conditions.prepend_testing_payloads(
"localdb/database.txt")
865 Generate list of output files that the task should produce.
866 The task is considered finished
if and only
if the outputs all exist.
870 yield self.add_to_output(
871 f
"to_pxd_ckf_validation{fbdt_state_filter_string}_{fbdt_result_filter_string}.root")
875 This task requires trained result filters, trained state filters, and that an independent data set
for validation was
876 created using the SplitMergeSimTask
with the random seed optimisation.
880 result_filter_records_name=f
"filter_records{fbdt_state_filter_string}.root",
885 random_seed=
'training'
891 random_seed=
"optimisation",
893 filter_numbers = [1, 2, 3]
894 for filter_number
in filter_numbers:
896 CKFStateFilterTeacherTask,
899 random_seed=
"training",
900 filter_number=filter_number,
906 Create a path to validate the trained filters.
908 path = basf2.create_path()
911 file_list = [fname
for sublist
in self.get_input_file_names().values()
912 for fname
in sublist
if "generated_mc_N" in fname
and "optimisation" in fname
and fname.endswith(
".root")]
913 path.add_module(
"RootInput", inputFileNames=file_list)
915 path.add_module(
"Gearbox")
916 path.add_module(
"Geometry")
917 path.add_module(
"SetupGenfitExtrapolation")
919 add_hit_preparation_modules(path, components=[
"SVD",
"PXD"])
921 add_track_finding(path, reco_tracks=
"CDCSVDRecoTracks", components=[
"CDC",
"SVD"], prune_temporary_tracks=
False)
923 path.add_module(
"DAFRecoFitter", recoTracksStoreArrayName=
"CDCSVDRecoTracks")
931 f
"trk_ToPXDStateFilter_1_Parameter{fbdt_state_filter_string}",
933 f
"trk_ToPXDStateFilter_1{fbdt_state_filter_string}",
937 f
"trk_ToPXDStateFilter_2_Parameter{fbdt_state_filter_string}",
939 f
"trk_ToPXDStateFilter_2{fbdt_state_filter_string}",
943 f
"trk_ToPXDStateFilter_3_Parameter{fbdt_state_filter_string}",
945 f
"trk_ToPXDStateFilter_3{fbdt_state_filter_string}",
949 f
"trk_ToPXDResultFilter_Parameter{fbdt_result_filter_string}",
951 f
"trk_ToPXDResultFilter{fbdt_result_filter_string}",
954 basf2.conditions.prepend_testing_payloads(
"localdb/database.txt")
955 first_high_filter_parameters = {
"DBPayloadName": f
"trk_ToPXDStateFilter_1_Parameter{fbdt_state_filter_string}",
956 "direction":
"backward"}
957 second_high_filter_parameters = {
"DBPayloadName": f
"trk_ToPXDStateFilter_2_Parameter{fbdt_state_filter_string}"}
958 third_high_filter_parameters = {
"DBPayloadName": f
"trk_ToPXDStateFilter_3_Parameter{fbdt_state_filter_string}"}
959 filter_parameters = {
"DBPayloadName": f
"trk_ToPXDResultFilter_Parameter{fbdt_result_filter_string}"}
961 path.add_module(
"ToPXDCKF",
962 inputRecoTrackStoreArrayName=
"CDCSVDRecoTracks",
963 outputRecoTrackStoreArrayName=
"PXDRecoTracks",
964 outputRelationRecoTrackStoreArrayName=
"CDCSVDRecoTracks",
966 relationCheckForDirection=
"backward",
968 writeOutDirection=
"backward",
970 firstHighFilter=
"mva_with_direction_check",
971 firstHighFilterParameters=first_high_filter_parameters,
974 advanceHighFilter=
"advance",
975 advanceHighFilterParameters={
"direction":
"backward"},
977 secondHighFilter=
"mva",
978 secondHighFilterParameters=second_high_filter_parameters,
981 updateHighFilter=
"fit",
983 thirdHighFilter=
"mva",
984 thirdHighFilterParameters=third_high_filter_parameters,
988 filterParameters=filter_parameters,
992 enableOverlapResolving=
True)
994 path.add_module(
'RelatedTracksCombiner',
995 VXDRecoTracksStoreArrayName=
"PXDRecoTracks",
996 CDCRecoTracksStoreArrayName=
"CDCSVDRecoTracks",
997 recoTracksStoreArrayName=
"RecoTracks")
999 path.add_module(
'TrackFinderMCTruthRecoTracks',
1000 RecoTracksStoreArrayName=
"MCRecoTracks",
1006 path.add_module(
"MCRecoTracksMatcher", UsePXDHits=
True, UseSVDHits=
True, UseCDCHits=
True,
1007 mcRecoTracksStoreArrayName=
"MCRecoTracks",
1008 prRecoTracksStoreArrayName=
"RecoTracks")
1012 output_file_name=self.get_output_file_name(
1013 f
"to_pxd_ckf_validation{fbdt_state_filter_string}_{fbdt_result_filter_string}.root"),
1014 reco_tracks_name=
"RecoTracks",
1015 mc_reco_tracks_name=
"MCRecoTracks",
1022 def create_path(self):
1024 Create basf2 path to process with event generation
and simulation.
1029class MainTask(b2luigi.WrapperTask):
1031 Wrapper task that needs to finish for b2luigi to finish running this steering file.
1033 It
is done
if the outputs of all required subtasks exist. It
is thus at the
1034 top of the luigi task graph. Edit the ``requires`` method to steer which
1035 tasks
and with which parameters you want to run.
1038 n_events_training = b2luigi.get_setting(
1040 "n_events_training", default=1000
1044 n_events_testing = b2luigi.get_setting(
1046 "n_events_testing", default=500
1050 n_events_per_task = b2luigi.get_setting(
1052 "n_events_per_task", default=100
1056 num_processes = b2luigi.get_setting(
1058 "basf2_processes_per_worker", default=0
1063 bkgfiles_by_exp = b2luigi.get_setting(
"bkgfiles_by_exp")
1065 bkgfiles_by_exp = {int(key): val
for (key, val)
in bkgfiles_by_exp.items()}
1069 Generate list of tasks that needs to be done for luigi to finish running
1073 fast_bdt_options = [
1079 experiment_numbers = b2luigi.get_setting("experiment_numbers")
1082 for experiment_number, fast_bdt_option_state_filter, fast_bdt_option_result_filter
in itertools.product(
1083 experiment_numbers, fast_bdt_options, fast_bdt_options
1086 state_filter_cuts = [0.01, 0.02, 0.03, 0.05, 0.1, 0.2]
1087 n_best_states_list = [3, 5, 10]
1088 result_filter_cuts = [0.05, 0.1, 0.2]
1089 n_best_results_list = [2, 3, 5]
1090 for state_filter_cut, n_best_states, result_filter_cut, n_best_results
in \
1091 itertools.product(state_filter_cuts, n_best_states_list, result_filter_cuts, n_best_results_list):
1093 ValidationAndOptimisationTask,
1094 experiment_number=experiment_number,
1097 state_filter_cut=state_filter_cut,
1098 use_n_best_states=n_best_states,
1099 result_filter_cut=result_filter_cut,
1100 use_n_best_results=n_best_results,
1101 fast_bdt_option_state_filter=fast_bdt_option_state_filter,
1102 fast_bdt_option_result_filter=fast_bdt_option_result_filter,
1106if __name__ ==
"__main__":
1108 b2luigi.set_setting(
"env_script",
"./setup_basf2.sh")
1109 b2luigi.get_setting(
"batch_system",
"lsf")
1110 workers = b2luigi.get_setting(
"workers", default=1)
1111 b2luigi.process(
MainTask(), workers=workers, batch=
True)
def get_background_files(folder=None, output_file_info=True)
b2luigi random_seed
Random basf2 seed.
b2luigi training_target
Feature/variable to use as truth label in the quality estimator MVA classifier.
b2luigi fast_bdt_option_result_filter
Hyperparameter option of the FastBDT algorithm.
b2luigi n_events
Number of events to generate for the training data set.
b2luigi fast_bdt_option_state_filter
Hyperparameter option of the FastBDT algorithm.
b2luigi experiment_number
Experiment number of the conditions database, e.g.
def get_weightfile_identifier(self, fast_bdt_option=None)
b2luigi exclude_variables
List of collected variables to not use in the training of the QE MVA classifier.
b2luigi result_filter_records_name
Name of the input file name.
b2luigi training_target
Feature/variable to use as truth label in the quality estimator MVA classifier.
def get_weightfile_identifier(self, fast_bdt_option=None, filter_number=None)
b2luigi filter_number
Number of the filter for which the records files are to be processed.
b2luigi n_events
Number of events to generate for the training data set.
b2luigi fast_bdt_option_state_filter
Hyperparameter option of the FastBDT algorithm.
b2luigi experiment_number
Experiment number of the conditions database, e.g.
b2luigi exclude_variables
List of collected variables to not use in the training of the QE MVA classifier.
b2luigi random_seed
Random basf2 seed.
def output_file_name(self, n_events=None, random_seed=None)
Name of the ROOT output file with generated and simulated events.
b2luigi bkgfiles_dir
Directory with overlay background root files.
b2luigi n_events
Number of events to generate.
b2luigi experiment_number
Experiment number of the conditions database, e.g.
b2luigi n_events_training
Number of events to generate for the training data set.
b2luigi n_events_testing
Number of events to generate for the test data set.
def create_result_recording_path(self, result_filter_records_name)
b2luigi random_seed
Random basf2 seed.
b2luigi n_events_training
Number of events to generate.
b2luigi fast_bdt_option_state_filter
Hyperparameter option of the FastBDT algorithm.
b2luigi experiment_number
Experiment number of the conditions database, e.g.
b2luigi result_filter_records_name
Name of the records file for training the final result filter.
b2luigi random_seed
Random basf2 seed.
def output_file_name(self, n_events=None, random_seed=None)
Name of the ROOT output file with generated and simulated events.
b2luigi bkgfiles_dir
Directory with overlay background root files.
b2luigi n_events
Number of events to generate.
b2luigi experiment_number
Experiment number of the conditions database, e.g.
b2luigi random_seed
Random basf2 seed.
def create_state_recording_path(self, layer, records1_fname, records2_fname, records3_fname)
b2luigi n_events
Number of events to generate.
b2luigi experiment_number
Experiment number of the conditions database, e.g.
b2luigi layer
Layer on which to toggle for recording the information for training.
b2luigi n_events_training
Number of events to generate for the training data set.
b2luigi n_events_testing
Number of events to generate for the testing, validation, and optimisation data set.
b2luigi use_n_best_states
How many states should be kept at maximum in the combinatorial part of the CKF tree search.
b2luigi use_n_best_results
How many results should be kept at maximum to search for overlaps.
b2luigi state_filter_cut
Value of the cut on the MVA classifier output for accepting a state during CKF tracking.
b2luigi fast_bdt_option_result_filter
FastBDT option to use to train the Result Filter.
def create_optimisation_and_validation_path(self)
b2luigi result_filter_cut
Value of the cut on the MVA classifier output for a result candidate.
b2luigi fast_bdt_option_state_filter
FastBDT option to use to train the StateFilters.
b2luigi experiment_number
Experiment number of the conditions database, e.g.
def add_simulation(path, components=None, bkgfiles=None, bkgOverlay=True, forceSetPXDDataReduction=False, usePXDDataReduction=True, cleanupPXDDataReduction=True, generate_2nd_cdc_hits=False, simulateT0jitter=True, isCosmics=False, FilterEvents=False, usePXDGatedMode=False, skipExperimentCheckForBG=False, save_slow_pions_in_mc=False)