12 This script can be used to train the FEI on a cluster like available at KEKCC
13 All you need is a basf2 steering file (see analysis/examples/FEI/ ) and some MC O(100) million
14 The script will automatically create some directories
15 - collection containing weight files, monitoring files and other stuff
16 - jobs containing temporary files during the training (can be deleted afterwards)
18 The distributed script automatically spawns jobs on the cluster (
or local machine),
19 and runs the steering file on the provided MC.
20 Since a FEI training requires multiple runs over the same MC, it does so multiple times.
21 The output of a run
is passed
as input to the next run (so your script has to use RootInput
and RootOutput).
23 In between it calls the do_trainings function of the FEI, to train the multivariate classifiers of the FEI
26 At the end it produces summary outputs using printReporting.py
and latexReporting.py
27 (this will only work
if you use the monitoring mode)
28 In addition, a summary file
for each mva training
is produced using basf2_mva_evaluate.
30 If your training fails
for some reason (e.g. a job fails on the cluster),
31 the FEI will stop, you can fix the problem
and resume the training using the -x option.
32 This requires some expert knowledge, because you have to know how to fix the occurred problem
33 and at which step you have to resume the training.
35 After the training the weight files will be stored
in the localdb
in the collection directory
36 You have to upload these local database to the Belle II Condition Database
if you want to use the FEI everywhere.
37 Alternatively you can just copy the localdb to somewhere
and use it directly.
40 python3 ~/release/analysis/scripts/fei/distributed.py
42 -f ~/release/analysis/examples/FEI/B_generic.py
43 -w /home/belle2/tkeck/group/B2TauNuWorkspace_2/new_fei
45 -d $(ls /ghi/fs01/belle2/bdata/MC/release-00-07-02/DBxxxxxxxx/MC7/prod00000786/s00/e0000/4S/r00000/mixed/sub01/*.root
47 $(ls /ghi/fs01/belle2/bdata/MC/release-00-07-02/DBxxxxxxxx/MC7/prod00000788/s00/e0000/4S/r00000/charged/sub01/*.root
66def getCommandLineOptions():
67 """ Parses the command line options of the fei and returns the corresponding arguments. """
72 ROOT.PyConfig.IgnoreCommandLineOptions =
True
73 parser = argparse.ArgumentParser()
74 parser.add_argument(
'-f',
'--steeringFile', dest=
'steering', type=str, required=
True,
75 help=
'Steering file. Calls fei.get_path()')
76 parser.add_argument(
'-w',
'--workingDirectory', dest=
'directory', type=str, required=
True,
77 help=
'Working directory for basf2 jobs. On KEKCC, this must NOT be on HSM!')
78 parser.add_argument(
'-l',
'--largeDirectory', dest=
'large_dir', type=str, default=
'',
79 help=
'Directory to store large files')
80 parser.add_argument(
'-n',
'--nJobs', dest=
'nJobs', type=int, default=100,
81 help=
'Number of jobs')
82 parser.add_argument(
'-d',
'--data', dest=
'data', type=str, required=
True, action=
'append', nargs=
'+',
83 help=
'Data files in bash expansion syntax or as process_url')
84 parser.add_argument(
'-x',
'--skip-to', dest=
'skip', type=str, default=
'',
85 help=
'Skip setup of directories')
86 parser.add_argument(
'-o',
'--once', dest=
'once', action=
'store_true',
87 help=
'Execute just once time, instead of waiting until a Summary is produced.')
88 parser.add_argument(
'-s',
'--site', dest=
'site', type=str, default=
'kekcc',
89 help=
'Site to use [kekcc|kitekp|local]')
90 args = parser.parse_args()
94def get_job_script(args, i):
96 Create a bash file which will be dispatched to the batch system.
97 The file will run basf2 on the provided MC or the previous output
98 using the provided steering file.
101 if [ -f
"{args.directory}/jobs/{i}/basf2_input.root" ]; then
102 INPUT=
"{args.directory}/jobs/{i}/basf2_input.root"
104 INPUT=
"{args.directory}/jobs/{i}/input_*.root"
106 time basf2 -l error {args.directory}/collection/basf2_steering_file.py -i
"$INPUT" \
107 -o {args.directory}/jobs/{i}/basf2_output.root &> my_output_hack.log || touch basf2_job_error
108 touch basf2_finished_successfully
115 Setup all directories, create job_scripts, split up MC into chunks
116 which are processed by each job. Create symlinks for databases.
118 os.chdir(args.directory)
124 if (y.startswith(
"http://")
or y.startswith(
"https://")):
127 data_files += glob.glob(y)
128 print(f
'Found {len(data_files)} MC files')
130 for file
in data_files:
131 file_sizes.append(os.stat(file).st_size)
132 data_files_sorted = [x
for _, x
in sorted(zip(file_sizes, data_files))]
133 n = int(len(data_files) / args.nJobs)
135 raise RuntimeError(f
'Too few MC files {len(data_files)} for the given number of jobs {args.nJobs}')
136 data_chunks = [data_files_sorted[i::args.nJobs]
for i
in range(args.nJobs)]
139 print(f
'Create environment in {args.directory}')
140 shutil.rmtree(
'collection', ignore_errors=
True)
141 shutil.rmtree(
'jobs', ignore_errors=
True)
142 os.mkdir(
'collection')
143 os.mkdir(
'collection/localdb')
146 if not os.path.isdir(args.large_dir):
147 raise RuntimeError(
'Large dir does not exist. Please make sure it does.')
149 shutil.copyfile(args.steering,
'collection/basf2_steering_file.py')
151 for i
in range(args.nJobs):
153 os.mkdir(f
'jobs/{i}')
154 with open(f
'jobs/{i}/basf2_script.sh',
'w')
as f:
155 f.write(get_job_script(args, i))
156 os.chmod(f.fileno(), stat.S_IXUSR | stat.S_IRUSR | stat.S_IWUSR)
158 for j, data_input
in enumerate(data_chunks[i]):
159 os.symlink(data_input, f
'jobs/{i}/input_{j}.root')
161 os.symlink(args.directory +
'/collection/localdb', f
'jobs/{i}/localdb')
164def create_report(args):
166 Dumps Summary.pickle to JSON for easy inspection.
167 Create all the reports
for the FEI training
and the individual mva trainings.
168 This will only work
if
169 1) Monitoring mode
is used (see FeiConfiguration)
170 2) The system has enough memory to hold the training data
for the mva classifiers
171 If this fails you can also copy the collection directory somewhere
and
172 execute the commands by hand.
174 os.chdir(args.directory + '/collection')
175 with open(
'Summary.pickle',
'rb')
as file:
176 summary = pickle.load(file)
178 summary_dict = {particle.identifier:
179 {
'mvaConfig': particle.mvaConfig._asdict(),
180 'channels': [{field: (value._asdict()
if field
in [
'mvaConfig',
'preCutConfig']
else value)
for
181 field, value
in channel._asdict().items()}
for channel
in particle.channels],
182 'preCutConfig': particle.preCutConfig._asdict(),
183 'postCutConfig': particle.postCutConfig._asdict()}
184 for particle
in summary[0]}
185 summary_dict.update({
'feiConfig': summary[1]._asdict()})
187 with open(
'Summary.json',
'w')
as summary_json_file:
188 json.dump(summary_dict, summary_json_file, indent=4)
190 ret = subprocess.call(
'basf2 fei/printReporting.py > ../summary.txt', shell=
True)
191 ret = subprocess.call(
'basf2 fei/latexReporting.py ../summary.tex', shell=
True)
192 for i
in glob.glob(
"*.xml"):
193 if not fei.core.Teacher.check_if_weightfile_is_fake(i):
194 subprocess.call(f
"basf2_mva_evaluate.py -id '{i[:-4]}.xml' -data 'training_input.root' "
195 f
"--treename '{i[:-4]} variables' -o '../{i[:-4]}.zip'", shell=
True)
196 os.chdir(args.directory)
200def submit_job(args, i):
202 Submits a job to the desired batch system.
203 Currently we can run on KEKCC (long queue), KEKCC (dedicated FEI queue),
204 EKP @ KIT, or your local machine
207 if os.path.isfile(args.directory +
'/collection/Summary.pickle'):
208 shutil.copyfile(args.directory +
'/collection/Summary.pickle', args.directory + f
'/jobs/{i}/Summary.pickle')
209 os.chdir(args.directory + f
'/jobs/{i}/')
210 if args.site ==
'kekcc':
211 ret = subprocess.call(
"bsub -q l -e error.log -o output.log ./basf2_script.sh | cut -f 2 -d ' ' | sed 's/<//' | sed 's/>//' > basf2_jobid", shell=
True)
212 elif args.site ==
'kekcc2':
213 ret = subprocess.call(
"bsub -q b2_fei -e error.log -o output.log ./basf2_script.sh | cut -f 2 -d ' ' | sed 's/<//' | sed 's/>//' > basf2_jobid", shell=
True)
214 elif args.site ==
'kitekp':
215 ret = subprocess.call(
"qsub -cwd -q express,short,medium,long -e error.log -o output.log -V basf2_script.sh | cut -f 3 -d ' ' > basf2_jobid", shell=
True)
216 elif args.site ==
'local':
217 subprocess.Popen([
'bash',
'./basf2_script.sh'])
220 raise RuntimeError(f
'Given site {args.site} is not supported')
221 os.chdir(args.directory)
225def do_trainings(args):
227 Trains the multivariate classifiers for all available training data
in
228 the collection directory, which wasn
't trained yet. This is called once per iteration
230 os.chdir(args.directory + '/collection')
231 if not os.path.isfile(
'Summary.pickle'):
233 particles, configuration = pickle.load(open(
'Summary.pickle',
'rb'))
234 weightfiles = fei.do_trainings(particles, configuration)
235 for i
in range(args.nJobs):
236 for weightfile_on_disk, _
in weightfiles:
237 os.symlink(args.directory +
'/collection/' + weightfile_on_disk,
238 args.directory + f
'/jobs/{i}/' + weightfile_on_disk)
240 xmlfiles = glob.glob(
"*.xml")
241 for i
in range(args.nJobs):
242 for xmlfile
in xmlfiles:
243 if not os.path.isfile(args.directory + f
'/jobs/{i}/' + xmlfile):
244 print(
"Added missing symlink to ", xmlfile,
" in job directory ", i)
245 os.symlink(args.directory +
'/collection/' + xmlfile,
246 args.directory + f
'/jobs/{i}/' + xmlfile)
247 os.chdir(args.directory)
250def jobs_finished(args):
252 Check if all jobs already finished.
253 Throws a runtime error of it detects an error
in one of the jobs
255 finished = glob.glob(args.directory + '/jobs/*/basf2_finished_successfully')
256 failed = glob.glob(args.directory +
'/jobs/*/basf2_job_error')
259 raise RuntimeError(f
'basf2 execution failed! Error occurred in: {str(failed)}')
261 return len(finished) == args.nJobs
264def merge_root_files(args):
266 Merges all produced ROOT files of all jobs together
267 and puts the merged ROOT files into the collection directory.
269 - the training data
for the multivariate classifiers
270 - the monitoring files
273 for f
in glob.glob(args.directory +
'/jobs/0/*.root'):
274 f = os.path.basename(f)
275 if f
in [
'basf2_input.root',
'basf2_output.root']:
277 if f.startswith(
'input_'):
280 if os.path.isfile(args.directory +
'/collection/' + f)
and not f ==
'training_input.root':
283 if len(rootfiles) == 0:
284 print(
'There are no root files to merge')
286 print(
'Merge the following files', rootfiles)
288 output = args.directory +
'/collection/' + f
289 inputs = [args.directory + f
'/jobs/{i}/' + f
for i
in range(args.nJobs)]
290 ret = subprocess.call([
'analysis-fei-mergefiles', output] + inputs)
292 raise RuntimeError(
'Error during merging root files')
295 if f ==
'mcParticlesCount.root':
298 os.symlink(output, i)
301def update_input_files(args):
303 Updates the input files.
304 For the first iteration the input files are the MC provided by the user.
305 After each training this function replaces the input with the output of the previous iteration.
306 Effectively this caches the whole DataStore of basf2 between the iterations.
308 for i
in range(args.nJobs):
309 output_file = args.directory +
'/jobs/' + str(i) +
'/basf2_output.root'
310 input_file = args.directory +
'/jobs/' + str(i) +
'/basf2_input.root'
312 real_input_file = args.large_dir +
'/basf2_input_' + str(i) +
'.root'
313 shutil.move(output_file, real_input_file)
314 if os.path.isfile(input_file):
315 os.remove(input_file)
316 os.symlink(real_input_file, input_file)
318 shutil.move(output_file, input_file)
321 shutil.copyfile(args.directory +
'/jobs/0/Summary.pickle', args.directory +
'/collection/Summary.pickle')
324def clean_job_directory(args):
326 Cleans the job directory for the next iteration
327 Meaning we remove all logs
329 files = glob.glob(args.directory + '/jobs/*/basf2_finished_successfully')
330 files += glob.glob(args.directory +
'/jobs/*/error.log')
331 files += glob.glob(args.directory +
'/jobs/*/output.log')
336def is_still_training(args):
338 Checks if the FEI training
is still ongoing.
339 The training
is finished
if the FEI reached stage 7
341 os.chdir(args.directory + '/collection')
342 if not os.path.isfile(
'Summary.pickle'):
344 particles, configuration = pickle.load(open(
'Summary.pickle',
'rb'))
345 os.chdir(args.directory)
346 return configuration.cache != 7
349if __name__ ==
'__main__':
350 args = getCommandLineOptions()
352 os.chdir(args.directory)
358 print(
'Skipping setup')
360 if args.skip ==
'clean':
362 elif args.skip ==
'update':
364 elif args.skip ==
'merge':
366 elif args.skip ==
'wait':
368 elif args.skip ==
'submit':
370 elif args.skip ==
'resubmit':
372 elif args.skip ==
'report':
374 elif args.skip ==
'run':
377 raise RuntimeError(f
'Unknown skip parameter {args.skip}')
385 print(
'Submitting jobs')
386 for i
in range(args.nJobs):
391 error_file = args.directory + f
'/jobs/{i}/basf2_job_error'
392 success_file = args.directory + f
'/jobs/{i}/basf2_finished_successfully'
393 if os.path.isfile(error_file)
or not os.path.isfile(success_file):
394 print(f
"Delete {error_file} and resubmit job")
395 if os.path.isfile(error_file):
396 os.remove(error_file)
397 if os.path.isfile(success_file):
398 os.remove(success_file)
402 shutil.copyfile(os.path.join(args.directory,
'collection/Summary.pickle'),
403 os.path.join(args.directory, f
'jobs/{i}/Summary.pickle'))
404 if not submit_job(args, i):
405 raise RuntimeError(
'Error during submitting job')
408 print(
'Wait for jobs to end')
409 while not jobs_finished(args):
413 print(
'Merge ROOT files')
414 merge_root_files(args)
417 print(
'Update input files')
418 update_input_files(args)
421 print(
'Clean job directory')
422 clean_job_directory(args)
437 while is_still_training(args):
438 print(
'Do available trainings')
441 print(
'Submitting jobs')
442 for i
in range(args.nJobs):
443 if not submit_job(args, i):
444 raise RuntimeError(
'Error during submitting jobs')
446 print(
'Wait for jobs to end')
447 while not jobs_finished(args):
450 print(
'Merge ROOT files')
451 merge_root_files(args)
453 print(
'Update input files')
454 update_input_files(args)
456 print(
'Clean job directory')
457 clean_job_directory(args)
def parse_process_url(url)