Belle II Software development
distributed.py
1#!/usr/bin/env python3
2
3
10
11"""
12 This script can be used to train the FEI on a cluster like available at KEKCC
13 All you need is a basf2 steering file (see analysis/examples/FEI/ ) and some MC O(100) million
14 The script will automatically create some directories
15 - collection containing weight files, monitoring files and other stuff
16 - jobs containing temporary files during the training (can be deleted afterwards)
17
18 The distributed script automatically spawns jobs on the cluster (or local machine),
19 and runs the steering file on the provided MC.
20 Since a FEI training requires multiple runs over the same MC, it does so multiple times.
21 The output of a run is passed as input to the next run (so your script has to use RootInput and RootOutput).
22
23 In between it calls the do_trainings function of the FEI, to train the multivariate classifiers of the FEI
24 at each stage.
25
26 At the end it produces summary outputs using printReporting.py and latexReporting.py
27 (this will only work if you use the monitoring mode)
28 In addition, a summary file for each mva training is produced using basf2_mva_evaluate.
29
30 If your training fails for some reason (e.g. a job fails on the cluster),
31 the FEI will stop, you can fix the problem and resume the training using the -x option.
32 This requires some expert knowledge, because you have to know how to fix the occurred problem
33 and at which step you have to resume the training.
34
35 After the training the weight files will be stored in the localdb in the collection directory
36 You have to upload these local database to the Belle II Condition Database if you want to use the FEI everywhere.
37 Alternatively you can just copy the localdb to somewhere and use it directly.
38
39 Example:
40 python3 ~/release/analysis/scripts/fei/distributed.py
41 -s kekcc2
42 -f ~/release/analysis/examples/FEI/B_generic.py
43 -w /home/belle2/tkeck/group/B2TauNuWorkspace_2/new_fei
44 -n 100
45 -d $(ls /ghi/fs01/belle2/bdata/MC/release-00-07-02/DBxxxxxxxx/MC7/prod00000786/s00/e0000/4S/r00000/mixed/sub01/*.root
46 | head -n 50)
47 $(ls /ghi/fs01/belle2/bdata/MC/release-00-07-02/DBxxxxxxxx/MC7/prod00000788/s00/e0000/4S/r00000/charged/sub01/*.root
48 | head -n 50)
49"""
50
51
52import subprocess
53import sys
54import os
55import argparse
56import glob
57import time
58import stat
59import shutil
60import pickle
61import json
62import b2biiConversion
63import fei
64
65
66def getCommandLineOptions():
67 """ Parses the command line options of the fei and returns the corresponding arguments. """
68 # FEI defines own command line options, therefore we disable
69 # the ROOT command line options, which otherwise interfere sometimes.
70 # Always avoid the top-level 'import ROOT'.
71 import ROOT # noqa
72 ROOT.PyConfig.IgnoreCommandLineOptions = True
73 parser = argparse.ArgumentParser()
74 parser.add_argument('-f', '--steeringFile', dest='steering', type=str, required=True,
75 help='Steering file. Calls fei.get_path()')
76 parser.add_argument('-w', '--workingDirectory', dest='directory', type=str, required=True,
77 help='Working directory for basf2 jobs. On KEKCC, this must NOT be on HSM!')
78 parser.add_argument('-l', '--largeDirectory', dest='large_dir', type=str, default='',
79 help='Directory to store large files')
80 parser.add_argument('-n', '--nJobs', dest='nJobs', type=int, default=100,
81 help='Number of jobs')
82 parser.add_argument('-d', '--data', dest='data', type=str, required=True, action='append', nargs='+',
83 help='Data files in bash expansion syntax or as process_url')
84 parser.add_argument('-x', '--skip-to', dest='skip', type=str, default='',
85 help='Skip setup of directories')
86 parser.add_argument('-o', '--once', dest='once', action='store_true',
87 help='Execute just once time, instead of waiting until a Summary is produced.')
88 parser.add_argument('-s', '--site', dest='site', type=str, default='kekcc',
89 help='Site to use [kekcc|kitekp|local]')
90 args = parser.parse_args()
91 return args
92
93
94def get_job_script(args, i):
95 """
96 Create a bash file which will be dispatched to the batch system.
97 The file will run basf2 on the provided MC or the previous output
98 using the provided steering file.
99 """
100 job_script = f"""
101 if [ -f "{args.directory}/jobs/{i}/basf2_input.root" ]; then
102 INPUT="{args.directory}/jobs/{i}/basf2_input.root"
103 else
104 INPUT="{args.directory}/jobs/{i}/input_*.root"
105 fi
106 time basf2 -l error {args.directory}/collection/basf2_steering_file.py -i "$INPUT" \
107 -o {args.directory}/jobs/{i}/basf2_output.root &> my_output_hack.log || touch basf2_job_error
108 touch basf2_finished_successfully
109 """
110 return job_script
111
112
113def setup(args):
114 """
115 Setup all directories, create job_scripts, split up MC into chunks
116 which are processed by each job. Create symlinks for databases.
117 """
118 os.chdir(args.directory)
119 # Search and partition data files into even chunks
120 data_files = []
121
122 for x in args.data:
123 for y in x:
124 if (y.startswith("http://") or y.startswith("https://")):
125 data_files += b2biiConversion.parse_process_url(y)
126 else:
127 data_files += glob.glob(y)
128 print(f'Found {len(data_files)} MC files')
129 file_sizes = []
130 for file in data_files:
131 file_sizes.append(os.stat(file).st_size)
132 data_files_sorted = [x for _, x in sorted(zip(file_sizes, data_files))]
133 n = int(len(data_files) / args.nJobs)
134 if n < 1:
135 raise RuntimeError(f'Too few MC files {len(data_files)} for the given number of jobs {args.nJobs}')
136 data_chunks = [data_files_sorted[i::args.nJobs] for i in range(args.nJobs)]
137
138 # Create needed directories
139 print(f'Create environment in {args.directory}')
140 shutil.rmtree('collection', ignore_errors=True)
141 shutil.rmtree('jobs', ignore_errors=True)
142 os.mkdir('collection')
143 os.mkdir('collection/localdb')
144 os.mkdir('jobs')
145 if args.large_dir:
146 if not os.path.isdir(args.large_dir):
147 raise RuntimeError('Large dir does not exist. Please make sure it does.')
148
149 shutil.copyfile(args.steering, 'collection/basf2_steering_file.py')
150
151 for i in range(args.nJobs):
152 # Create job directory
153 os.mkdir(f'jobs/{i}')
154 with open(f'jobs/{i}/basf2_script.sh', 'w') as f:
155 f.write(get_job_script(args, i))
156 os.chmod(f.fileno(), stat.S_IXUSR | stat.S_IRUSR | stat.S_IWUSR)
157 # Symlink initial input data files
158 for j, data_input in enumerate(data_chunks[i]):
159 os.symlink(data_input, f'jobs/{i}/input_{j}.root')
160 # Symlink weight directory and basf2_path
161 os.symlink(args.directory + '/collection/localdb', f'jobs/{i}/localdb')
162
163
164def create_report(args):
165 """
166 Dumps Summary.pickle to JSON for easy inspection.
167 Create all the reports for the FEI training and the individual mva trainings.
168 This will only work if
169 1) Monitoring mode is used (see FeiConfiguration)
170 2) The system has enough memory to hold the training data for the mva classifiers
171 If this fails you can also copy the collection directory somewhere and
172 execute the commands by hand.
173 """
174 os.chdir(args.directory + '/collection')
175 with open('Summary.pickle', 'rb') as file:
176 summary = pickle.load(file)
177
178 summary_dict = {particle.identifier:
179 {'mvaConfig': particle.mvaConfig._asdict(),
180 'channels': [{field: (value._asdict() if field in ['mvaConfig', 'preCutConfig'] else value) for
181 field, value in channel._asdict().items()} for channel in particle.channels],
182 'preCutConfig': particle.preCutConfig._asdict(),
183 'postCutConfig': particle.postCutConfig._asdict()}
184 for particle in summary[0]}
185 summary_dict.update({'feiConfig': summary[1]._asdict()})
186
187 with open('Summary.json', 'w') as summary_json_file:
188 json.dump(summary_dict, summary_json_file, indent=4)
189
190 ret = subprocess.call('basf2 fei/printReporting.py > ../summary.txt', shell=True)
191 ret = subprocess.call('basf2 fei/latexReporting.py ../summary.tex', shell=True)
192 for i in glob.glob("*.xml"):
193 if not fei.core.Teacher.check_if_weightfile_is_fake(i):
194 subprocess.call(f"basf2_mva_evaluate.py -id '{i[:-4]}.xml' -data 'training_input.root' "
195 f"--treename '{i[:-4]} variables' -o '../{i[:-4]}.zip'", shell=True)
196 os.chdir(args.directory)
197 return ret == 0
198
199
200def submit_job(args, i):
201 """
202 Submits a job to the desired batch system.
203 Currently we can run on KEKCC (long queue), KEKCC (dedicated FEI queue),
204 EKP @ KIT, or your local machine
205 """
206 # Synchronize summaries
207 if os.path.isfile(args.directory + '/collection/Summary.pickle'):
208 shutil.copyfile(args.directory + '/collection/Summary.pickle', args.directory + f'/jobs/{i}/Summary.pickle')
209 os.chdir(args.directory + f'/jobs/{i}/')
210 if args.site == 'kekcc':
211 ret = subprocess.call("bsub -q l -e error.log -o output.log ./basf2_script.sh | cut -f 2 -d ' ' | sed 's/<//' | sed 's/>//' > basf2_jobid", shell=True) # noqa
212 elif args.site == 'kekcc2':
213 ret = subprocess.call("bsub -q b2_fei -e error.log -o output.log ./basf2_script.sh | cut -f 2 -d ' ' | sed 's/<//' | sed 's/>//' > basf2_jobid", shell=True) # noqa
214 elif args.site == 'kitekp':
215 ret = subprocess.call("qsub -cwd -q express,short,medium,long -e error.log -o output.log -V basf2_script.sh | cut -f 3 -d ' ' > basf2_jobid", shell=True) # noqa
216 elif args.site == 'local':
217 subprocess.Popen(['bash', './basf2_script.sh'])
218 ret = 0
219 else:
220 raise RuntimeError(f'Given site {args.site} is not supported')
221 os.chdir(args.directory)
222 return ret == 0
223
224
225def do_trainings(args):
226 """
227 Trains the multivariate classifiers for all available training data in
228 the collection directory, which wasn't trained yet. This is called once per iteration
229 """
230 os.chdir(args.directory + '/collection')
231 if not os.path.isfile('Summary.pickle'):
232 return
233 particles, configuration = pickle.load(open('Summary.pickle', 'rb'))
234 weightfiles = fei.do_trainings(particles, configuration)
235 for i in range(args.nJobs):
236 for weightfile_on_disk, _ in weightfiles:
237 os.symlink(args.directory + '/collection/' + weightfile_on_disk,
238 args.directory + f'/jobs/{i}/' + weightfile_on_disk)
239 # Check if some xml files are missing
240 xmlfiles = glob.glob("*.xml")
241 for i in range(args.nJobs):
242 for xmlfile in xmlfiles:
243 if not os.path.isfile(args.directory + f'/jobs/{i}/' + xmlfile):
244 print("Added missing symlink to ", xmlfile, " in job directory ", i)
245 os.symlink(args.directory + '/collection/' + xmlfile,
246 args.directory + f'/jobs/{i}/' + xmlfile)
247 os.chdir(args.directory)
248
249
250def jobs_finished(args):
251 """
252 Check if all jobs already finished.
253 Throws a runtime error of it detects an error in one of the jobs
254 """
255 finished = glob.glob(args.directory + '/jobs/*/basf2_finished_successfully')
256 failed = glob.glob(args.directory + '/jobs/*/basf2_job_error')
257
258 if len(failed) > 0:
259 raise RuntimeError(f'basf2 execution failed! Error occurred in: {str(failed)}')
260
261 return len(finished) == args.nJobs
262
263
264def merge_root_files(args):
265 """
266 Merges all produced ROOT files of all jobs together
267 and puts the merged ROOT files into the collection directory.
268 This affects mostly
269 - the training data for the multivariate classifiers
270 - the monitoring files
271 """
272 rootfiles = []
273 for f in glob.glob(args.directory + '/jobs/0/*.root'):
274 f = os.path.basename(f)
275 if f in ['basf2_input.root', 'basf2_output.root']:
276 continue
277 if f.startswith('input_'):
278 continue
279 # in case of training_input.root, append to already existing file
280 if os.path.isfile(args.directory + '/collection/' + f) and not f == 'training_input.root':
281 continue
282 rootfiles.append(f)
283 if len(rootfiles) == 0:
284 print('There are no root files to merge')
285 else:
286 print('Merge the following files', rootfiles)
287 for f in rootfiles:
288 output = args.directory + '/collection/' + f
289 inputs = [args.directory + f'/jobs/{i}/' + f for i in range(args.nJobs)]
290 ret = subprocess.call(['analysis-fei-mergefiles', output] + inputs)
291 if ret != 0:
292 raise RuntimeError('Error during merging root files')
293 # Replace mcParticlesCount.root with merged file in all directories
294 # so that the individual jobs calculate the correct mcCounts and sampling rates
295 if f == 'mcParticlesCount.root':
296 for i in inputs:
297 os.remove(i)
298 os.symlink(output, i)
299
300
301def update_input_files(args):
302 """
303 Updates the input files.
304 For the first iteration the input files are the MC provided by the user.
305 After each training this function replaces the input with the output of the previous iteration.
306 Effectively this caches the whole DataStore of basf2 between the iterations.
307 """
308 for i in range(args.nJobs):
309 output_file = args.directory + '/jobs/' + str(i) + '/basf2_output.root'
310 input_file = args.directory + '/jobs/' + str(i) + '/basf2_input.root'
311 if args.large_dir:
312 real_input_file = args.large_dir + '/basf2_input_' + str(i) + '.root'
313 shutil.move(output_file, real_input_file)
314 if os.path.isfile(input_file):
315 os.remove(input_file)
316 os.symlink(real_input_file, input_file)
317 else:
318 shutil.move(output_file, input_file)
319 # Saves the Summary.pickle of the first job to the collection directory
320 # so we can keep track at which stage of the reconstruction the FEI is currently.
321 shutil.copyfile(args.directory + '/jobs/0/Summary.pickle', args.directory + '/collection/Summary.pickle')
322
323
324def clean_job_directory(args):
325 """
326 Cleans the job directory for the next iteration
327 Meaning we remove all logs
328 """
329 files = glob.glob(args.directory + '/jobs/*/basf2_finished_successfully')
330 files += glob.glob(args.directory + '/jobs/*/error.log')
331 files += glob.glob(args.directory + '/jobs/*/output.log')
332 for f in files:
333 os.remove(f)
334
335
336def is_still_training(args):
337 """
338 Checks if the FEI training is still ongoing.
339 The training is finished if the FEI reached stage 7
340 """
341 os.chdir(args.directory + '/collection')
342 if not os.path.isfile('Summary.pickle'):
343 return True
344 particles, configuration = pickle.load(open('Summary.pickle', 'rb'))
345 os.chdir(args.directory)
346 return configuration.cache != 7
347
348
349if __name__ == '__main__':
350 args = getCommandLineOptions()
351
352 os.chdir(args.directory)
353
354 # If the user wants resume an existing training
355 # we check at which step he wants to resume and
356 # try to perform the necessary steps to do so
357 if args.skip:
358 print('Skipping setup')
359 start = 0
360 if args.skip == 'clean':
361 start = 1
362 elif args.skip == 'update':
363 start = 2
364 elif args.skip == 'merge':
365 start = 3
366 elif args.skip == 'wait':
367 start = 4
368 elif args.skip == 'submit':
369 start = 5
370 elif args.skip == 'resubmit':
371 start = 6
372 elif args.skip == 'report':
373 start = 7
374 elif args.skip == 'run':
375 start = 0
376 else:
377 raise RuntimeError(f'Unknown skip parameter {args.skip}')
378
379 if start == 7:
380 create_report(args)
381 sys.exit(0)
382
383 # The user wants to submit the jobs again
384 if start >= 5:
385 print('Submitting jobs')
386 for i in range(args.nJobs):
387 # The user wants to resubmit jobs, this means the training of some jobs failed
388 # We check which jobs contained an error flag, and were not successful
389 # These jobs are submitted again, other jobs are skipped (continue)
390 if start >= 6:
391 error_file = args.directory + f'/jobs/{i}/basf2_job_error'
392 success_file = args.directory + f'/jobs/{i}/basf2_finished_successfully'
393 if os.path.isfile(error_file) or not os.path.isfile(success_file):
394 print(f"Delete {error_file} and resubmit job")
395 if os.path.isfile(error_file):
396 os.remove(error_file)
397 if os.path.isfile(success_file):
398 os.remove(success_file)
399 else:
400 continue
401 # Reset Summary file
402 shutil.copyfile(os.path.join(args.directory, 'collection/Summary.pickle'),
403 os.path.join(args.directory, f'jobs/{i}/Summary.pickle'))
404 if not submit_job(args, i):
405 raise RuntimeError('Error during submitting job')
406
407 if start >= 4:
408 print('Wait for jobs to end')
409 while not jobs_finished(args):
410 time.sleep(40)
411
412 if start >= 3:
413 print('Merge ROOT files')
414 merge_root_files(args)
415
416 if start >= 2:
417 print('Update input files')
418 update_input_files(args)
419
420 if start >= 1:
421 print('Clean job directory')
422 clean_job_directory(args)
423
424 else:
425 # This is a new training
426 # So we have to setup the whole directory (this will override any existing training)
427 setup(args)
428
429 # The main loop, which steers the whole FEI training on a batch system
430 # 1. We check if the FEI still requires further steps
431 # 2. We do all necessary trainings which we can perform at this point in time
432 # 3. We submit new jobs which will use the new trainings to reconstruct the hierarchy further
433 # 4. We wait until all jobs finished
434 # 5. We merge the output of the jobs
435 # 6. We update the inputs of the jobs (input of next stage is the output of the current stage)
436 # 7. We clean the job directories so they can be used during the next stage again.
437 while is_still_training(args):
438 print('Do available trainings')
439 do_trainings(args)
440
441 print('Submitting jobs')
442 for i in range(args.nJobs):
443 if not submit_job(args, i):
444 raise RuntimeError('Error during submitting jobs')
445
446 print('Wait for jobs to end')
447 while not jobs_finished(args):
448 time.sleep(40)
449
450 print('Merge ROOT files')
451 merge_root_files(args)
452
453 print('Update input files')
454 update_input_files(args)
455
456 print('Clean job directory')
457 clean_job_directory(args)
458
459 if args.once:
460 break
461 else:
462 # This else will be called if the loop was not existed by break
463 # This means the training finished and we can create our summary reports.
464 create_report(args)
465
def parse_process_url(url)