Belle II Software development
eventwise_module.py
1
8
9import ROOT
10from ROOT import Belle2
11
12import numpy as np
13
14import tracking.validation.utilities as utilities
15
16import tracking.harvest.refiners as refiners
17import tracking.harvest.harvesting as harvesting
18ROOT.gSystem.Load("libtracking")
19
20
21class EventwiseTrackingValidationModule(harvesting.HarvestingModule):
22 """Module to perform event-by-event tracking validation."""
23
24 """ Expert level behavior:
25 expert_level <= default_expert_level: all figures and plots from this module except tree entries
26 expert_level > default_expert_level: everything including tree entries
27 """
28
29
30 default_expert_level = 10
31
32 def __init__(self,
33 name,
34 contact,
35 output_file_name=None,
36 reco_tracks_name='RecoTracks',
37 mc_reco_tracks_name='MCRecoTracks',
38 expert_level=None):
39 """Constructor"""
40
41 output_file_name = output_file_name or name + 'TrackingValidation.root'
42
43 super().__init__(foreach="EventMetaData", # Dummy for on element per event
44 name=name,
45 output_file_name=output_file_name,
46 contact=contact,
47 expert_level=expert_level)
48
49
50 self.reco_tracks_name = reco_tracks_name
51
52 self.mc_reco_tracks_name = mc_reco_tracks_name
53
54 self.cdc_hits_name = "CDCHits"
55
56 def initialize(self):
57 """Initialization signal at the start of the event processing"""
58 super().initialize()
59
62
63 def pick(self, event_meta_data=None):
64 """Always pick"""
65 return True
66
67 def peel(self, event_meta_data=None):
68 """Peel information from the event"""
69 # Note event_meta_data is just used as a dummy.
70
71 track_match_look_up = self.track_match_look_up
72 reco_tracks = Belle2.PyStoreArray(self.reco_tracks_name)
73 mc_reco_tracks = Belle2.PyStoreArray(self.mc_reco_tracks_name)
74 cdc_hits = Belle2.PyStoreArray(self.cdc_hits_name)
75 mc_particles = Belle2.PyStoreArray("MCParticles")
76
77 # General object count in the event.
78 if mc_particles:
79 n_mc_particles = mc_particles.getEntries()
80 else:
81 n_mc_particles = -1
82
83 if mc_reco_tracks:
84 n_mc_reco_tracks = mc_reco_tracks.getEntries()
85 else:
86 n_mc_reco_tracks = -1
87
88 n_reco_tracks = reco_tracks.getEntries()
89
90 # Aggregate information about Monte Carlo tracks
91 all_mc_tracks_det_hit_ids = set()
92 n_matched_mc_reco_tracks = 0
93 n_matched_correct_charge_mc_reco_tracks = 0
94 n_matched_wrong_charge_mc_reco_tracks = 0
95 n_merged_mc_reco_tracks = 0
96 n_merged_correct_charge_mc_reco_tracks = 0
97 n_merged_wrong_charge_mc_reco_tracks = 0
98 n_missing_mc_reco_tracks = 0
99 for mc_reco_track in mc_reco_tracks:
100 mc_reco_track_det_hit_ids = utilities.get_det_hit_ids(mc_reco_track)
101 all_mc_tracks_det_hit_ids.update(mc_reco_track_det_hit_ids)
102
103 is_matched = track_match_look_up.isAnyChargeMatchedMCRecoTrack(mc_reco_track)
104 is_matched_correct_charge = track_match_look_up.isCorrectChargeMatchedMCRecoTrack(mc_reco_track)
105 is_matched_wrong_charge = track_match_look_up.isWrongChargeMatchedMCRecoTrack(mc_reco_track)
106 is_merged = track_match_look_up.isAnyChargeMergedMCRecoTrack(mc_reco_track)
107 is_merged_correct_charge = track_match_look_up.isCorrectChargeMergedMCRecoTrack(mc_reco_track)
108 is_merged_wrong_charge = track_match_look_up.isWrongChargeMergedMCRecoTrack(mc_reco_track)
109 is_missing = track_match_look_up.isMissingMCRecoTrack(mc_reco_track)
110
111 if is_matched:
112 n_matched_mc_reco_tracks += 1
113 if is_matched_correct_charge:
114 n_matched_correct_charge_mc_reco_tracks += 1
115 elif is_matched_wrong_charge:
116 n_matched_wrong_charge_mc_reco_tracks += 1
117 elif is_merged:
118 n_merged_mc_reco_tracks += 1
119 if is_merged_correct_charge:
120 n_merged_correct_charge_mc_reco_tracks += 1
121 elif is_merged_wrong_charge:
122 n_merged_wrong_charge_mc_reco_tracks += 1
123 elif is_missing:
124 n_missing_mc_reco_tracks += 1
125
126 # Aggregate information about pattern recognition tracks
127 n_matched_reco_tracks = 0
128 n_matched_correct_charge_reco_tracks = 0
129 n_matched_wrong_charge_reco_tracks = 0
130 n_clone_reco_tracks = 0
131 n_clone_correct_charge_reco_tracks = 0
132 n_clone_wrong_charge_reco_tracks = 0
133 n_background_reco_tracks = 0
134 n_ghost_reco_tracks = 0
135
136 all_tracks_det_hit_ids = set()
137 n_matched_hits = 0
138 for reco_track in reco_tracks:
139 is_matched = track_match_look_up.isAnyChargeMatchedPRRecoTrack(reco_track)
140 is_matched_correct_charge = track_match_look_up.isCorrectChargeMatchedPRRecoTrack(reco_track)
141 is_matched_wrong_charge = track_match_look_up.isWrongChargeMatchedPRRecoTrack(reco_track)
142 is_clone = track_match_look_up.isAnyChargeClonePRRecoTrack(reco_track)
143 is_clone_correct_charge = track_match_look_up.isCorrectChargeClonePRRecoTrack(reco_track)
144 is_clone_wrong_charge = track_match_look_up.isWrongChargeClonePRRecoTrack(reco_track)
145 is_background = track_match_look_up.isBackgroundPRRecoTrack(reco_track)
146 is_ghost = track_match_look_up.isGhostPRRecoTrack(reco_track)
147
148 if is_matched:
149 n_matched_reco_tracks += 1
150 if is_matched_correct_charge:
151 n_matched_correct_charge_reco_tracks += 1
152 elif is_matched_wrong_charge:
153 n_matched_wrong_charge_reco_tracks += 1
154 elif is_clone:
155 n_clone_reco_tracks += 1
156 if is_clone_correct_charge:
157 n_clone_correct_charge_reco_tracks += 1
158 elif is_clone_wrong_charge:
159 n_clone_wrong_charge_reco_tracks += 1
160 elif is_background:
161 n_background_reco_tracks += 1
162 elif is_ghost:
163 n_ghost_reco_tracks += 1
164
165 reco_track_det_hit_ids = utilities.get_det_hit_ids(reco_track)
166
167 all_tracks_det_hit_ids.update(reco_track_det_hit_ids)
168 if is_matched or is_clone:
169 mc_reco_track = self.track_match_look_up.getRelatedMCRecoTrack(reco_track)
170
171 mc_reco_track_det_hit_ids = utilities.get_det_hit_ids(mc_reco_track)
172 n_matched_hits += len(reco_track_det_hit_ids & mc_reco_track_det_hit_ids)
173
174 return dict(
175 n_mc_particles=n_mc_particles,
176 n_mc_reco_tracks=n_mc_reco_tracks,
177 n_reco_tracks=n_reco_tracks,
178
179 n_matched_mc_reco_tracks=n_matched_mc_reco_tracks,
180 n_matched_correct_charge_mc_reco_tracks=n_matched_correct_charge_mc_reco_tracks,
181 n_matched_wrong_charge_mc_reco_tracks=n_matched_wrong_charge_mc_reco_tracks,
182
183 n_merged_mc_reco_tracks=n_merged_mc_reco_tracks,
184 n_merged_correct_charge_mc_reco_tracks=n_merged_correct_charge_mc_reco_tracks,
185 n_merged_wrong_charge_mc_reco_tracks=n_merged_wrong_charge_mc_reco_tracks,
186
187 n_missing_mc_reco_tracks=n_missing_mc_reco_tracks,
188
189
190 n_matched_reco_tracks=n_matched_reco_tracks,
191 n_matched_correct_charge_reco_tracks=n_matched_correct_charge_reco_tracks,
192 n_matched_wrong_charge_reco_tracks=n_matched_wrong_charge_reco_tracks,
193 n_clone_reco_tracks=n_clone_reco_tracks,
194 n_clone_correct_charge_reco_tracks=n_clone_correct_charge_reco_tracks,
195 n_clone_wrong_charge_reco_tracks=n_clone_wrong_charge_reco_tracks,
196
197 n_background_reco_tracks=n_background_reco_tracks,
198 n_ghost_reco_tracks=n_ghost_reco_tracks,
199
200 n_cdc_hits=cdc_hits.getEntries(),
201 n_all_mc_track_hits=len(all_mc_tracks_det_hit_ids),
202 n_all_track_hits=len(all_tracks_det_hit_ids),
203 n_found_hits=len(all_mc_tracks_det_hit_ids & all_tracks_det_hit_ids),
204 n_matched_hits=n_matched_hits
205 )
206
207 # Refiners to be executed on terminate #
208 # ==================================== #
209
210
211 save_tree = refiners.save_tree(
212 # using cond to suppress false doxygen warnings
213
214 folder_name="event_tree",
215 name="event_tree",
216 above_expert_level=default_expert_level
217
218 )
219
220
221 save_clone_rate = refiners.save_fom(
222 # using cond to suppress false doxygen warnings
223
224 name="{module.id}_hit_figures_of_merit",
225 title="Hit sums in {module.title}",
226 description="", # to be given
227 select=[
228 "n_cdc_hits",
229 "n_all_mc_track_hits",
230 "n_all_track_hits",
231 "n_found_hits",
232 "n_matched_hits",
233 ],
234
235 aggregation=np.sum,
236 key="{part_name}",
237
238 )
A (simplified) python wrapper for StoreArray.
Definition: PyStoreArray.h:72
Class to provide convenient methods to look up matching information between pattern recognition and M...
track_match_look_up
Reference to the track-match object that examines relation information from MCMatcherTracksModule.
def __init__(self, name, contact, output_file_name=None, reco_tracks_name='RecoTracks', mc_reco_tracks_name='MCRecoTracks', expert_level=None)