Belle II Software development
record.py
1#!/usr/bin/env python3
2
3
10
11
12from ROOT import Belle2 # noqa: make Belle2 namespace available # noqa
13from ROOT.Belle2 import TrackFindingCDC as TFCDC
14
15import sys
16import random
17import numpy as np
18
19from tracking.validation.utilities import is_primary
20
21import tracking.harvest.harvesting as harvesting
22import tracking.harvest.refiners as refiners
23from tracking.harvest.run import HarvestingRun
24
25
26import logging
27
28
29def get_logger():
30 return logging.getLogger(__name__)
31
32
34 """Harvester to generate, postprocess and inspect MC events for track-segment evaluation"""
35
36 n_events = 10000
37
38 generator_module = "generic"
39
40 @property
42 """Get the output ROOT filename"""
43 return 'legendre_binning.root'
44
45 def harvesting_module(self, path=None):
46 """Harvest and post-process the generated events"""
48 if path:
49 path.add_module(harvesting_module)
50 return harvesting_module
51
52 def create_argument_parser(self, **kwds):
53 """Convert command-line arguments to basf2 argument list"""
54 argument_parser = super().create_argument_parser(**kwds)
55 return argument_parser
56
57 def create_path(self):
58 """
59 Sets up a path that plays back pregenerated events or generates events
60 based on the properties in the base class.
61 """
62 path = super().create_path()
63
64 path.add_module("TFCDC_WireHitPreparer",
65 logLevel=8,
66 flightTimeEstimation="outwards",
67 UseNLoops=1)
68
69 path.add_module('TFCDC_AxialTrackCreatorMCTruth',
70 logLevel=8,
71 useOnlyBeforeTOP=True,
72 fit=True,
73 reconstructedDriftLength=True,
74 reconstructedPositions=True)
75
76 return path
77
78
79class LegendreBinningValidationModule(harvesting.HarvestingModule):
80
81 """Module to collect information about the generated segments and
82 compose validation plots on terminate."""
83
84 def __init__(self, output_file_name):
85 """Constructor"""
86 super().__init__(foreach='CDCTrackVector',
87 output_file_name=output_file_name)
88
89
90 self.mc_track_lookup = None
91
92 origin_track_fitter = TFCDC.CDCRiemannFitter()
93 origin_track_fitter.setOriginConstrained()
94
95 self.track_fitter = origin_track_fitter
96
97 curv_bounds = []
98 with open('fine_curv_bounds.txt') as curv_bounds_file:
99 for curv_bound_line in curv_bounds_file:
100 curv_bounds.append(float(curv_bound_line))
101
102 bin_bounds = list(zip(curv_bounds[0::2], curv_bounds[1::2]))
103 bin_bounds = sorted(bin_bounds)
104
105
106 self.lower_curv_bounds = np.array([bin[0] for bin in bin_bounds])
107
108 self.upper_curv_bounds = np.array([bin[1] for bin in bin_bounds])
109
110 assert (len(self.lower_curv_bounds) == len(self.upper_curv_bounds))
111
112 def initialize(self):
113 """Receive signal at the start of event processing"""
114 super().initialize()
115
116 self.mc_track_lookup = TFCDC.CDCMCTrackLookUp.getInstance()
117
118 self.mc_hit_lookup = TFCDC.CDCMCHitLookUp.getInstance()
119
120 def prepare(self):
121 """Initialize the MC-hit lookup method"""
122 TFCDC.CDCMCHitLookUp.getInstance().fill()
123
124 def pick(self, track):
125 """Select tracks with at least 4 segments and associated primary MC particle"""
126 mc_track_lookup = self.mc_track_lookup
127 mc_particle = mc_track_lookup.getMCParticle(track)
128
129 # Check that mc_particle is not a nullptr
130 return mc_particle and is_primary(mc_particle) and track.size() > 3
131
132 def peel(self, track):
133 """Aggregate the track and MC information for track-segment analysis"""
134 track_fitter = self.track_fitter
135
136 rl_drift_circle = 1
137 unit_variance = 0
138 observations2D = TFCDC.CDCObservations2D(rl_drift_circle, unit_variance)
139
140 for recoHit3D in track:
141 observations2D.append(recoHit3D)
142
143 trajectory2D = track_fitter.fit(observations2D)
144 trajectory2D.setLocalOrigin(TFCDC.Vector2D(0, 0))
145
146 n_hits = track.size()
147 pt = trajectory2D.getAbsMom2D()
148 curv = trajectory2D.getCurvature()
149 curl_curv = abs(self.lower_curv_bounds[0])
150 bin_curv = curv if abs(curv) < curl_curv else abs(curv)
151 curv_var = trajectory2D.getLocalVariance(0)
152 impact = trajectory2D.getGlobalImpact()
153 phi0 = trajectory2D.getLocalCircle().phi0()
154
155 circle = trajectory2D.getLocalCircle()
156 n12 = circle.n12()
157
158 cross_curvs = []
159 for recoHit3D in track:
160 wire_ref_pos = recoHit3D.getRefPos2D()
161 drift_length = recoHit3D.getSignedRecoDriftLength()
162 r = wire_ref_pos.norm()
163 cross_curv = -2 * (n12.dot(wire_ref_pos) - drift_length) / (r * r - drift_length * drift_length)
164 cross_curvs.append(cross_curv)
165
166 cross_curvs = np.array(cross_curvs)
167 cross_curv = np.median(cross_curvs)
168 cross_curv_var = np.median(np.abs(cross_curvs - cross_curv))
169
170 basic_curv_precision = TFCDC.PrecisionUtil.getBasicCurvPrecision(cross_curv)
171 origin_curv_precision = TFCDC.PrecisionUtil.getOriginCurvPrecision(cross_curv)
172 non_origin_curv_precision = TFCDC.PrecisionUtil.getNonOriginCurvPrecision(cross_curv)
173
174 bin_id = np.digitize([abs(cross_curv)], self.lower_curv_bounds)
175 if bin_id == 0:
176 max_curv_precision = 0.00007
177 else:
178 max_curv_precision = self.upper_curv_bounds[bin_id - 1] - self.lower_curv_bounds[bin_id - 1]
179
180 random_bin_id = random.randrange(len(self.upper_curv_bounds))
181 random_lower_curv_bound = self.lower_curv_bounds[random_bin_id]
182 random_upper_curv_bound = self.upper_curv_bounds[random_bin_id]
183 curv_dense = random.uniform(random_lower_curv_bound, random_upper_curv_bound)
184 curv_width = random_upper_curv_bound - random_lower_curv_bound
185
186 return dict(
187 n_hits=n_hits,
188 curvature_estimate=curv,
189 curvature_variance=curv_var,
190 abs_curvature_estimate=abs(curv),
191 inv_curv=1.0 / abs(curv),
192 cross_curv=cross_curv,
193 cross_curv_var=cross_curv_var,
194 basic_curv_precision=basic_curv_precision,
195 origin_curv_precision=origin_curv_precision,
196 non_origin_curv_precision=non_origin_curv_precision,
197 max_curv_precision=max_curv_precision,
198 pt=pt,
199 curv_bin=bin_curv,
200 curv_dense=curv_dense,
201 curv_width=curv_width,
202 impact_estimate=impact,
203 phi0=phi0,
204 )
205
206 # Refiners to be executed at the end of the harvesting / termination of the module
207
208 save_tree = refiners.save_tree()
209
210 save_histograms = refiners.save_histograms(outlier_z_score=5.0, allow_discrete=True)
211
212
213 save_profiles = refiners.save_profiles(x=['curvature_estimate', 'phi0'],
214 y='curvature_variance',
215 outlier_z_score=5.0)
216
217
218 save_cross_curv_profile = refiners.save_profiles(x=['cross_curv'],
219 y=['cross_curv_var',
220 'curvature_estimate',
221 'basic_curv_precision',
222 'origin_curv_precision',
223 'non_origin_curv_precision',
224 'max_curv_precision',
225 ],
226 outlier_z_score=5.0)
227
228
229 save_scatter = refiners.save_scatters(x=['curvature_estimate'], y='n_hits')
230
231
232def main():
234 run.configure_and_execute_from_commandline()
235
236
237if __name__ == "__main__":
238 logging.basicConfig(stream=sys.stdout, level=logging.INFO, format='%(levelname)s:%(message)s')
239 main()
mc_track_lookup
by default, there is no method to find matching MC tracks
Definition: record.py:90
mc_hit_lookup
Method to find matching MC hits.
Definition: record.py:118
track_fitter
Use the CDCReimannFitter with a constrained origin for track fitting.
Definition: record.py:95
lower_curv_bounds
cached copy of lower bounds
Definition: record.py:106
upper_curv_bounds
cached copy of upper bounds
Definition: record.py:108
def __init__(self, output_file_name)
Definition: record.py:84
def create_argument_parser(self, **kwds)
Definition: record.py:52
def harvesting_module(self, path=None)
Definition: record.py:45
None output_file_name
Disable the writing of an output ROOT file.
Definition: run.py:20
None output_file_name
There is no default for the name of the output TFile.
Definition: mixins.py:60
Definition: main.py:1