Belle II Software development
SignalInterpolation2 Struct Reference

Interpolation of signal shape using function values and the first derivative. More...

#include <ECLWaveformFit.h>

Public Member Functions

 SignalInterpolation2 ()
 Default constructor.
 
 SignalInterpolation2 (const std::vector< double > &)
 Constructor with parameters with the parameter layout as in ECLDigitWaveformParameters.
 
void getShape (double t0, double *function, double *derivatives) const
 Returns signal shape and derivatives in 31 equidistant time points starting from t0.
 

Public Attributes

double m_FunctionInterpolation [c_nt *c_ndt+c_ntail]
 Function values.
 
double m_DerivativeInterpolation [c_nt *c_ndt+c_ntail]
 Derivative values.
 
double m_r0
 Assuming exponential drop of the signal function far away from 0, extrapolate it to +inf.
 
double m_r1
 See above/.
 

Static Public Attributes

static constexpr int c_nt = 12
 Signal function is sampled in c_nt time steps with c_ndt substeps and c_ntail steps.
 
static constexpr int c_ndt = 5
 Number of substeps.
 
static constexpr int c_ntail = 20
 Number of tail steps.
 
static constexpr double c_dt = 0.5
 Time step.
 
static constexpr double c_idt = 1 / c_dt
 Inverted time step.
 
static constexpr double c_dtn = c_dt / c_ndt
 Time substep.
 
static constexpr double c_idtn = c_ndt / c_dt
 Inverted time substep.
 

Detailed Description

Interpolation of signal shape using function values and the first derivative.

Definition at line 57 of file ECLWaveformFit.h.

Constructor & Destructor Documentation

◆ SignalInterpolation2() [1/2]

Default constructor.

Definition at line 105 of file ECLWaveformFit.h.

105{};

◆ SignalInterpolation2() [2/2]

SignalInterpolation2 ( const std::vector< double > &  s)
explicit

Constructor with parameters with the parameter layout as in ECLDigitWaveformParameters.

Definition at line 611 of file ECLWaveformFit.cc.

612{
613 double T0 = -0.2;
614 std::vector<double> p(s.begin() + 1, s.end());
615 p[1] = std::max(0.0029, p[1]);
616 p[4] = std::max(0.0029, p[4]);
617
618 ShaperDSP_t dsp(p, s[0]);
619 dsp.settimestride(c_dtn);
620 dsp.settimeseed(T0);
621 dd_t t[(c_nt + c_ntail)*c_ndt];
622 dsp.fillarray(sizeof(t) / sizeof(t[0]), t);
623
624 for (int i = 0; i < c_nt * c_ndt; i++) {
625 m_FunctionInterpolation[i] = t[i].first;
626 m_DerivativeInterpolation[i] = t[i].second;
627 }
628 for (int i = 0; i < c_ntail; i++) {
629 int j = c_nt * c_ndt + i;
630 int k = c_nt * c_ndt + i * c_ndt;
631 m_FunctionInterpolation[j] = t[k].first;
632 m_DerivativeInterpolation[j] = t[k].second;
633 }
634 int i1 = c_nt * c_ndt + c_ntail - 2;
635 int i2 = c_nt * c_ndt + c_ntail - 1;
638}
Class include function that calculate electronic response from energy deposit
Definition: shaperdsp.h:26
double m_r0
Assuming exponential drop of the signal function far away from 0, extrapolate it to +inf.
static constexpr int c_ntail
Number of tail steps.
double m_FunctionInterpolation[c_nt *c_ndt+c_ntail]
Function values.
static constexpr int c_nt
Signal function is sampled in c_nt time steps with c_ndt substeps and c_ntail steps.
double m_DerivativeInterpolation[c_nt *c_ndt+c_ntail]
Derivative values.
static constexpr int c_ndt
Number of substeps.
static constexpr double c_dtn
Time substep.

Member Function Documentation

◆ getShape()

void getShape ( double  t0,
double *  function,
double *  derivatives 
) const

Returns signal shape and derivatives in 31 equidistant time points starting from t0.

Parameters
[in]t0Time.
[out]functionFunction values.
[out]derivativesDerivatives.

Definition at line 640 of file ECLWaveformFit.cc.

642{
643 /* If before pulse start time (negative times), return 0. */
644 int k = 0;
645 while (t0 < 0) {
646 function[k] = 0;
647 derivatives[k] = 0;
648 t0 += c_dt;
649 ++k;
650 if (k >= c_NFitPoints)
651 return;
652 }
653
654 /* Function and derivative values. */
655 double function0[c_NFitPoints], function1[c_NFitPoints];
656 double derivative0[c_NFitPoints], derivative1[c_NFitPoints];
657
658 /* Interpolate first c_nt points (short time steps). */
659 double x = t0 * c_idtn;
660 double ix = floor(x);
661 double w = x - ix;
662 int j = ix;
663 double w2 = w * w;
664 double hw2 = 0.5 * w2;
665 double tw3 = ((1. / 6) * w) * w2;
666
667 /* Number of interpolation points. */
668 int iMax = k + c_nt;
669 if (iMax > c_NFitPoints)
670 iMax = c_NFitPoints;
671
672 /* Fill interpolation points. */
673 for (int i = k; i < iMax; ++i) {
674 function0[i] = m_FunctionInterpolation[j];
675 function1[i] = m_FunctionInterpolation[j + 1];
676 derivative0[i] = m_DerivativeInterpolation[j];
677 derivative1[i] = m_DerivativeInterpolation[j + 1];
678 j = j + c_ndt;
679 }
680
681 /* Interpolation. */
682 #pragma omp simd
683 for (int i = k; i < iMax; ++i) {
684 double a[4];
685 double dfdt = (function1[i] - function0[i]) * c_idtn;
686 double fp = derivative1[i] + derivative0[i];
687 a[0] = function0[i];
688 a[1] = derivative0[i];
689 a[2] = -((fp + derivative0[i]) - 3 * dfdt);
690 a[3] = fp - 2 * dfdt;
691 double b2 = 2 * a[2];
692 double b3 = 6 * a[3];
693 function[i] = a[0] + c_dtn * (a[1] * w + b2 * hw2 + b3 * tw3);
694 derivatives[i] = a[1] + b2 * w + b3 * hw2;
695 }
696 t0 = t0 + c_dt * c_nt;
697 if (iMax == c_NFitPoints)
698 return;
699 k = iMax;
700
701 /* Interpolate next c_ntail points (long time steps). */
702 x = t0 * c_idt;
703 ix = floor(x);
704 w = x - ix;
705 w2 = w * w;
706 hw2 = 0.5 * w2;
707 tw3 = ((1. / 6) * w) * w2;
708
709 /* Number of interpolation points. */
710 iMax = k + c_ntail - 1;
711 if (iMax > c_NFitPoints)
712 iMax = c_NFitPoints;
713
714 /* Interpolation. */
715 #pragma omp simd
716 for (int i = k; i < iMax; ++i) {
717 j = c_nt * c_ndt + i - k;
718 /*
719 * The interpolation step is the same as the distance between
720 * the fit points. It is possible to load the values in the interpolation
721 * loop while keeping its vectorization.
722 */
723 double f0 = m_FunctionInterpolation[j];
724 double f1 = m_FunctionInterpolation[j + 1];
725 double fp0 = m_DerivativeInterpolation[j];
726 double fp1 = m_DerivativeInterpolation[j + 1];
727 double a[4];
728 double dfdt = (f1 - f0) * c_idt;
729 double fp = fp1 + fp0;
730 a[0] = f0;
731 a[1] = fp0;
732 a[2] = -((fp + fp0) - 3 * dfdt);
733 a[3] = fp - 2 * dfdt;
734 double b2 = 2 * a[2];
735 double b3 = 6 * a[3];
736 function[i] = a[0] + c_dt * (a[1] * w + b2 * hw2 + b3 * tw3);
737 derivatives[i] = a[1] + b2 * w + b3 * hw2;
738 }
739 if (iMax == c_NFitPoints)
740 return;
741 k = iMax;
742
743 /* Exponential tail. */
744 while (k < c_NFitPoints) {
745 function[k] = function[k - 1] * m_r0;
746 derivatives[k] = derivatives[k - 1] * m_r1;
747 ++k;
748 }
749}
static constexpr double c_idt
Inverted time step.
static constexpr double c_idtn
Inverted time substep.
static constexpr double c_dt
Time step.

Member Data Documentation

◆ c_dt

constexpr double c_dt = 0.5
staticconstexpr

Time step.

Definition at line 72 of file ECLWaveformFit.h.

◆ c_dtn

constexpr double c_dtn = c_dt / c_ndt
staticconstexpr

Time substep.

Definition at line 78 of file ECLWaveformFit.h.

◆ c_idt

constexpr double c_idt = 1 / c_dt
staticconstexpr

Inverted time step.

Definition at line 75 of file ECLWaveformFit.h.

◆ c_idtn

constexpr double c_idtn = c_ndt / c_dt
staticconstexpr

Inverted time substep.

Definition at line 81 of file ECLWaveformFit.h.

◆ c_ndt

constexpr int c_ndt = 5
staticconstexpr

Number of substeps.

Definition at line 66 of file ECLWaveformFit.h.

◆ c_nt

constexpr int c_nt = 12
staticconstexpr

Signal function is sampled in c_nt time steps with c_ndt substeps and c_ntail steps.

c_dt is the time step.

Definition at line 63 of file ECLWaveformFit.h.

◆ c_ntail

constexpr int c_ntail = 20
staticconstexpr

Number of tail steps.

Definition at line 69 of file ECLWaveformFit.h.

◆ m_DerivativeInterpolation

double m_DerivativeInterpolation[c_nt *c_ndt+c_ntail]

Derivative values.

Definition at line 87 of file ECLWaveformFit.h.

◆ m_FunctionInterpolation

double m_FunctionInterpolation[c_nt *c_ndt+c_ntail]

Function values.

Definition at line 84 of file ECLWaveformFit.h.

◆ m_r0

double m_r0

Assuming exponential drop of the signal function far away from 0, extrapolate it to +inf.

f(i_last + i) = f(i_last)*m_r0^i f'(i_last + i) = f'(i_last)*m_r1^i where i_last is the last point within sampled values in m_FunctionInterpolation (m_DerivativeInterpolation).

Definition at line 97 of file ECLWaveformFit.h.

◆ m_r1

double m_r1

See above/.

Definition at line 100 of file ECLWaveformFit.h.


The documentation for this struct was generated from the following files: