17     handles data, necessary for the training 
   20     def __init__(self, train_x, train_y, valid_x, valid_y, batch_size, seed=None, epoch_random_shuffle=True):
 
   22         declaration of class variables 
   25         self.
train_xtrain_x = train_x.astype(np.float32)
 
   27         self.
train_ytrain_y = train_y.astype(np.float32)
 
   29         self.
valid_xvalid_x = valid_x.astype(np.float32)
 
   31         self.
valid_yvalid_y = valid_y.astype(np.float32)
 
   68         checks for a binary classification problem 
   69         transforms the two class labels to {0,1} 
   72         assert len(np.unique(self.
train_ytrain_y)) == 2
 
   74         assert np.array_equal(np.unique(self.
train_ytrain_y), np.unique(self.
valid_yvalid_y))
 
   77         if self.
train_ytrain_y.min() > 0:
 
   81         if self.
train_ytrain_y.max() != 1:
 
   86         if self.
train_ytrain_y.min() != 0:
 
   92         iterator to provide training batches 
   99         for i 
in range(self.
batchesbatches):
 
  108     stub class just for initializing in basf2 begin_run 
  111     def __init__(self, batch_size, feature_number, event_number, train_fraction):
 
  113         declare for initialization required batch parameters 
  128         self.
valid_eventsvalid_events = int((1 - train_fraction) * event_number)
 
train_events
number of training training events
def __init__(self, batch_size, feature_number, event_number, train_fraction)
feature_number
feature number
valid_events
number of validation events
epoch_random_shuffle
bool, enables shuffling
random_state
set random generator
valid_y
validation targets
train_events
number of training events
def __init__(self, train_x, train_y, valid_x, valid_y, batch_size, seed=None, epoch_random_shuffle=True)
seed
random generator seed
def sanitize_labels(self)
batch_train_y
np ndarray for training batch of targets
valid_x
validation features
train_idx
indices required for shuffling
feature_number
number of features
valid_events
number of validation events
batch_train_x
np ndarray for training batch features