17 Python uilities to help create or manage ntuples and work with them in pandas
23 Dump variables directly to HDF5
25 This Module is the equivalent of VariablesToNtuple but creates an hdf5 file
26 instead of a root file. It is slower as it is implemented in pure python and
27 should currently be considered a proof of concept.
30 def __init__(self, listname, variables, filename):
31 """Constructor to initialize the internal state
34 listname(str): name of the particle list
35 variables(list(str)): list of variables to save for each particle
36 filename(str): name of the hdf5 file to be created
47 """Create the hdf5 file and list of variable objects to be used during
52 str(varname)
for varname
in variables.variables.resolveCollections(
59 self.
_evtmeta_evtmeta = ROOT.Belle2.PyStoreObj(
"EventMetaData")
63 self.
_plist_plist.isRequired()
66 self.
_hdf5file_hdf5file = tables.open_file(self.
_filename_filename, mode=
"w", title=
"Belle2 Variables to HDF5")
68 basf2.B2ERROR(
"Cannot create output file")
71 dtype = [(
"exp", np.int32), (
"run", np.int32), (
"evt", np.uint32),
72 (
"prod", np.uint32), (
"icand", np.uint32), (
"ncand", np.uint32)]
75 dtype.append((name, np.float64))
79 filters = tables.Filters(complevel=1, complib=
'blosc:lz4', fletcher32=
False)
82 with warnings.catch_warnings():
83 warnings.simplefilter(
"ignore")
85 self.
_table_table = self.
_hdf5file_hdf5file.create_table(
"/", self.
_listname_listname, obj=np.zeros(0, dtype), filters=filters)
88 """Create a new row in the hdf5 file with for each particle in the list"""
89 buf = np.empty(self.
_plist_plist.getListSize(), dtype=self.
_dtype_dtype)
91 buf[
"exp"] = self.
_evtmeta_evtmeta.getExperiment()
92 buf[
"run"] = self.
_evtmeta_evtmeta.getRun()
93 buf[
"evt"] = self.
_evtmeta_evtmeta.getEvent()
94 buf[
"prod"] = self.
_evtmeta_evtmeta.getProduction()
95 buf[
"ncand"] = len(buf)
96 buf[
"icand"] = np.arange(len(buf))
98 for row, p
in zip(buf, self.
_plist_plist):
103 row[name] = variables.variables.evaluate(v.name, p)
105 self.
_table_table.append(buf)
108 """save and close the output"""
113 def make_mcerrors_readable(dataframe, column="mcErrors"):
115 Take a dataframe containing an column with the output of the :b2:var:`mcErrors`
116 variable from :b2:mod:`VariablesToNTuple` and convert it to a readable set
117 of columns of the form ``{column}_{name}`` where column is the value of the
118 ``column`` argument and ``name`` is one of one of the :ref:`mcmatching`
119 error flags (without the leading 'c_').
122 dataframe(pandas.DataFrame): the pandas dataframe containing an ntuple
123 with column containing the output of the mcErrors variable
124 column(str): the name containing the values from the mcErrors variable
128 if column
not in dataframe:
129 raise KeyError(f
"Cannot find coulumn '{column}'")
132 mcErrors = dataframe[column].astype(int)
135 for flag
in (e
for e
in dir(ROOT.Belle2.MCMatching)
if e.startswith(
"c_")):
137 value = int(getattr(ROOT.Belle2.MCMatching, flag))
143 name = column + flag[1:]
145 dataframe[name] = mcErrors == 0
147 dataframe[name] = (mcErrors & value) == value
152 if __name__ ==
"__main__":
153 import modularAnalysis
155 p = basf2.create_path()
156 p.add_module(
"EventInfoSetter", evtNumList=100)
157 p.add_module(
"EvtGenInput")
159 a =
VariablesToHDF5(
"pi-:gen", [
"M",
"E",
"px",
"py",
"pz"],
"test.hdf5")
163 print(basf2.statistics)
_filename
Output filename.
_variables
List of variables.
_plist
Pointer to the particle list.
_var_objects
variable objects for each variable
_listname
Particle list name.
def __init__(self, listname, variables, filename)
def fillParticleListsFromMC(decayStringsWithCuts, addDaughters=False, skipNonPrimaryDaughters=False, writeOut=False, path=None, skipNonPrimary=False)