Belle II Software  light-2309-munchkin
Utility.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #include <mva/utility/Utility.h>
10 #include <mva/utility/DataDriven.h>
11 #include <mva/methods/PDF.h>
12 #include <mva/methods/Reweighter.h>
13 #include <mva/methods/Trivial.h>
14 #include <mva/methods/Combination.h>
15 
16 #include <framework/logging/Logger.h>
17 
18 #include <framework/utilities/MakeROOTCompatible.h>
19 
20 #include <boost/algorithm/string/predicate.hpp>
21 #include <boost/property_tree/xml_parser.hpp>
22 
23 #include <iostream>
24 #include <chrono>
25 #include <string>
26 #include <regex>
27 #include <fstream>
28 
29 using namespace Belle2::MVA;
30 
31 void Utility::download(const std::string& identifier, const std::string& filename, int experiment, int run, int event)
32 {
33  Belle2::EventMetaData emd(event, run, experiment);
35  if (boost::ends_with(filename, ".root")) {
36  Belle2::MVA::Weightfile::saveToROOTFile(weightfile, filename);
37  } else if (boost::ends_with(filename, ".xml")) {
38  Belle2::MVA::Weightfile::saveToXMLFile(weightfile, filename);
39  } else {
40  std::cerr << "Unknown file extension, fallback to xml" << std::endl;
41  Belle2::MVA::Weightfile::saveToXMLFile(weightfile, filename);
42  }
43 }
44 
45 void Utility::upload(const std::string& filename, const std::string& identifier, int exp1, int run1, int exp2, int run2)
46 {
47  Belle2::IntervalOfValidity iov(exp1, run1, exp2, run2);
48  Belle2::MVA::Weightfile weightfile;
49  if (boost::ends_with(filename, ".root")) {
50  weightfile = Belle2::MVA::Weightfile::loadFromROOTFile(filename);
51  } else if (boost::ends_with(filename, ".xml")) {
52  weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
53  } else {
54  std::cerr << "Unknown file extension, fallback to xml" << std::endl;
55  weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
56  }
57  Belle2::MVA::Weightfile::saveToDatabase(weightfile, identifier, iov);
58 }
59 
60 void Utility::upload_array(const std::vector<std::string>& filenames, const std::string& identifier, int exp1, int run1, int exp2,
61  int run2)
62 {
63  Belle2::IntervalOfValidity iov(exp1, run1, exp2, run2);
64 
65  std::vector<Belle2::MVA::Weightfile> weightfiles;
66  for (const auto& filename : filenames) {
67 
68  Belle2::MVA::Weightfile weightfile;
69  if (boost::ends_with(filename, ".root")) {
70  weightfile = Belle2::MVA::Weightfile::loadFromROOTFile(filename);
71  } else if (boost::ends_with(filename, ".xml")) {
72  weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
73  } else {
74  std::cerr << "Unknown file extension, fallback to xml" << std::endl;
75  weightfile = Belle2::MVA::Weightfile::loadFromXMLFile(filename);
76  }
77  weightfiles.push_back(weightfile);
78  }
79  Belle2::MVA::Weightfile::saveArrayToDatabase(weightfiles, identifier, iov);
80 }
81 
82 void Utility::extract(const std::string& filename, const std::string& directory)
83 {
84 
86  auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
87  auto weightfile = Weightfile::load(filename);
88  weightfile.setRemoveTemporaryDirectories(false);
89  weightfile.setTemporaryDirectory(directory);
90  GeneralOptions general_options;
91  weightfile.getOptions(general_options);
92  auto expertLocal = supported_interfaces[general_options.m_method]->getExpert();
93  expertLocal->load(weightfile);
94 
95 }
96 
97 std::string Utility::info(const std::string& filename)
98 {
99 
101  auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
102  auto weightfile = Weightfile::load(filename);
103  GeneralOptions general_options;
104  weightfile.getOptions(general_options);
105 
106  auto specific_options = supported_interfaces[general_options.m_method]->getOptions();
107  specific_options->load(weightfile.getXMLTree());
108 
109  boost::property_tree::ptree temp_tree;
110  general_options.save(temp_tree);
111  specific_options->save(temp_tree);
112  std::ostringstream oss;
113 
114 #if BOOST_VERSION < 105600
115  boost::property_tree::xml_writer_settings<char> settings('\t', 1);
116 #else
117  boost::property_tree::xml_writer_settings<std::string> settings('\t', 1);
118 #endif
119  boost::property_tree::xml_parser::write_xml(oss, temp_tree, settings);;
120 
121  return oss.str();
122 
123 }
124 
125 bool Utility::available(const std::string& filename, int experiment, int run, int event)
126 {
127 
128  try {
129  auto weightfile = Weightfile::load(filename, Belle2::EventMetaData(event, run, experiment));
130  return true;
131  } catch (...) {
132  return false;
133  }
134 
135 }
136 
137 void Utility::expert(const std::vector<std::string>& filenames, const std::vector<std::string>& datafiles,
138  const std::string& treename,
139  const std::string& outputfile, int experiment, int run, int event, bool copy_target)
140 {
141 
142  TFile file(outputfile.c_str(), "RECREATE");
143  file.cd();
144  TTree tree("variables", "variables");
145 
147  auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
148 
149  for (auto& filename : filenames) {
150 
151  Belle2::EventMetaData emd(event, run, experiment);
152  auto weightfile = Weightfile::load(filename, emd);
153 
154  GeneralOptions general_options;
155  weightfile.getOptions(general_options);
156 
157  general_options.m_treename = treename;
158  // Override possible restriction of number of events in training
159  // otherwise this would apply to the expert as well.
160  general_options.m_max_events = 0;
161 
162  auto expertLocal = supported_interfaces[general_options.m_method]->getExpert();
163  expertLocal->load(weightfile);
164 
165  bool isMulticlass = general_options.m_nClasses > 2;
166 
167  // define if target variables should be copied
168  if (not copy_target) {
169  general_options.m_target_variable = std::string();
170  }
171 
172  general_options.m_datafiles = datafiles;
173  ROOTDataset data(general_options);
174 
175  std::vector<TBranch*> branches;
176  //create the output branches
177  if (not isMulticlass) {
178  float result = 0;
179  std::string branchname = Belle2::MakeROOTCompatible::makeROOTCompatible(filename);
180  branches.push_back(tree.Branch(branchname.c_str(), &result, (branchname + "/F").c_str()));
181  std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
182 
183  auto results = expertLocal->apply(data);
184  std::chrono::high_resolution_clock::time_point stop = std::chrono::high_resolution_clock::now();
185  std::chrono::duration<double, std::milli> application_time = stop - start;
186  B2INFO("Elapsed application time in ms " << application_time.count() << " for " << general_options.m_identifier);
187  for (auto& r : results) {
188  result = r;
189  branches[0]->Fill();
190  }
191 
192  } else {
193  float result = 0;
194  for (unsigned int iClass = 0; iClass < general_options.m_nClasses; ++iClass) {
195  std::string branchname = Belle2::MakeROOTCompatible::makeROOTCompatible(filename + "_" + std::to_string(iClass));
196  branches.push_back(tree.Branch(branchname.c_str(), &result, (branchname + "/F").c_str()));
197  }
198  std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
199  auto results = expertLocal->applyMulticlass(data);
200  std::chrono::high_resolution_clock::time_point stop = std::chrono::high_resolution_clock::now();
201  std::chrono::duration<double, std::milli> application_time = stop - start;
202  B2INFO("Elapsed application time in ms " << application_time.count() << " for " << general_options.m_identifier);
203  for (auto& r : results) {
204  for (unsigned int iClass = 0; iClass < general_options.m_nClasses; ++iClass) {
205  result = r[iClass];
206  branches[iClass]->Fill();
207  }
208  }
209 
210  }
211 
212 
213  if (not general_options.m_target_variable.empty()) {
214  std::string branchname = Belle2::MakeROOTCompatible::makeROOTCompatible(filename + "_" +
215  general_options.m_target_variable);
216  float target = 0;
217  auto target_branch = tree.Branch(branchname.c_str(), &target, (branchname + "/F").c_str());
218  auto targets = data.getTargets();
219  for (auto& t : targets) {
220  target = t;
221  target_branch->Fill();
222  }
223  }
224  }
225 
226  tree.SetEntries();
227  file.Write("variables");
228 
229 }
230 
231 void Utility::save_custom_weightfile(const GeneralOptions& general_options, const SpecificOptions& specific_options,
232  const std::string& custom_weightfile, const std::string& output_identifier)
233 {
234  std::ifstream ifile(custom_weightfile);
235  if (!(bool)ifile) {
236  B2FATAL("Input weight file: " << custom_weightfile << " does not exist!");
237  }
238 
239  Weightfile weightfile;
240  weightfile.addOptions(general_options);
241  weightfile.addOptions(specific_options);
242  weightfile.addFile(general_options.m_identifier + "_Weightfile", custom_weightfile);
243  std::string output_weightfile(custom_weightfile);
244  if (!output_identifier.empty()) {
245  std::regex to_replace("(\\.\\S+$)");
246  std::string replacement = "_" + output_identifier + "$0";
247  output_weightfile = std::regex_replace(output_weightfile, to_replace, replacement);
248  }
249  Weightfile::save(weightfile, output_weightfile);
250 }
251 
252 void Utility::teacher(const GeneralOptions& general_options, const SpecificOptions& specific_options,
253  const MetaOptions& meta_options)
254 {
255  unsigned int number_of_enabled_meta_trainings = 0;
256  if (meta_options.m_use_splot)
257  number_of_enabled_meta_trainings++;
258  if (meta_options.m_use_sideband_subtraction)
259  number_of_enabled_meta_trainings++;
260  if (meta_options.m_use_reweighting)
261  number_of_enabled_meta_trainings++;
262 
263  if (number_of_enabled_meta_trainings > 1) {
264  B2ERROR("You enabled more than one meta training option. You can only use one (sPlot, SidebandSubstraction or Reweighting)");
265  return;
266  }
267 
268  if (meta_options.m_use_splot) {
269  teacher_splot(general_options, specific_options, meta_options);
270  } else if (meta_options.m_use_sideband_subtraction) {
271  teacher_sideband_subtraction(general_options, specific_options, meta_options);
272  } else if (meta_options.m_use_reweighting) {
273  teacher_reweighting(general_options, specific_options, meta_options);
274  } else {
275  ROOTDataset data(general_options);
276  teacher_dataset(general_options, specific_options, data);
277  }
278 }
279 
280 
281 std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_dataset(GeneralOptions general_options,
282  const SpecificOptions& specific_options,
283  Dataset& data)
284 {
285  if (general_options.m_method.empty()) {
286  general_options.m_method = specific_options.getMethod();
287  } else {
288  if (general_options.m_method != specific_options.getMethod()) {
289  B2ERROR("The method specified in the general options is in conflict with the provided specific option:" << general_options.m_method
290  << " " << specific_options.getMethod());
291  }
292  }
294  auto supported_interfaces = AbstractInterface::getSupportedInterfaces();
295  if (supported_interfaces.find(general_options.m_method) != supported_interfaces.end()) {
296  auto teacherLocal = supported_interfaces[general_options.m_method]->getTeacher(general_options, specific_options);
297  std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
298  auto weightfile = teacherLocal->train(data);
299  std::chrono::high_resolution_clock::time_point stop = std::chrono::high_resolution_clock::now();
300  std::chrono::duration<double, std::milli> training_time = stop - start;
301  B2INFO("Elapsed training time in ms " << training_time.count() << " for " << general_options.m_identifier);
302  Weightfile::save(weightfile, general_options.m_identifier);
303  auto expertLocal = supported_interfaces[general_options.m_method]->getExpert();
304  expertLocal->load(weightfile);
305  return expertLocal;
306  } else {
307  B2ERROR("Interface doesn't support chosen method" << general_options.m_method);
308  throw std::runtime_error("Interface doesn't support chosen method" + general_options.m_method);
309  }
310 }
311 
312 std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_splot(const GeneralOptions& general_options,
313  const SpecificOptions& specific_options,
314  const MetaOptions& meta_options)
315 {
316 
317  GeneralOptions data_general_options = general_options;
318  data_general_options.m_target_variable = "";
319  if (meta_options.m_splot_combined)
320  data_general_options.m_identifier = general_options.m_identifier + "_splot.xml";
321  ROOTDataset data_dataset(data_general_options);
322  // Reset target variable so that it shows up in the weightfile at the end
323  data_general_options.m_target_variable = general_options.m_target_variable;
324 
325  GeneralOptions discriminant_general_options = general_options;
326  discriminant_general_options.m_target_variable = "";
327  discriminant_general_options.m_variables = {meta_options.m_splot_variable};
328  ROOTDataset discriminant_dataset(discriminant_general_options);
329  // Reset target variable so that it shows up in the weightfile at the end
330  discriminant_general_options.m_target_variable = general_options.m_target_variable;
331 
332  GeneralOptions mc_general_options = general_options;
333  mc_general_options.m_datafiles = meta_options.m_splot_mc_files;
334  mc_general_options.m_variables = {meta_options.m_splot_variable};
335  ROOTDataset mc_dataset(mc_general_options);
336 
337  auto mc_signals = mc_dataset.getSignals();
338  auto mc_weights = mc_dataset.getWeights();
339  auto mc_feature = mc_dataset.getFeature(0);
340  auto data_feature = discriminant_dataset.getFeature(0);
341  auto data_weights = discriminant_dataset.getWeights();
342 
343  Binning binning = Binning::CreateEqualFrequency(mc_feature, mc_weights, mc_signals, 100);
344 
345  float signalFraction = binning.m_signal_yield / (binning.m_signal_yield + binning.m_bckgrd_yield);
346 
347  std::vector<double> data(100, 0);
348  double total_data = 0.0;
349  for (unsigned int iEvent = 0; iEvent < data_dataset.getNumberOfEvents(); ++iEvent) {
350  data[binning.getBin(data_feature[iEvent])] += data_weights[iEvent];
351  total_data += data_weights[iEvent];
352  }
353 
354  // We do a simple fit here to estimate the signal and background yields
355  // We could use RooFit here to avoid using custom code,
356  // but I found RooFit to be difficult and unstable ...
357 
358  float best_yield = 0.0;
359  double best_chi2 = 1000000000.0;
360  bool empty_bin = false;
361  for (double yield = 0; yield < total_data; yield += 1) {
362  double chi2 = 0.0;
363  for (unsigned int iBin = 0; iBin < 100; ++iBin) {
364  double deviation = (data[iBin] - (yield * binning.m_signal_pdf[iBin] + (total_data - yield) * binning.m_bckgrd_pdf[iBin]) *
365  (binning.m_boundaries[iBin + 1] - binning.m_boundaries[iBin]) / (binning.m_boundaries[100] - binning.m_boundaries[0]));
366  if (data[iBin] > 0)
367  chi2 += deviation * deviation / data[iBin];
368  else
369  empty_bin = true;
370  }
371  if (chi2 < best_chi2) {
372  best_chi2 = chi2;
373  best_yield = yield;
374  }
375  }
376 
377  if (empty_bin) {
378  B2WARNING("Encountered empty bin in data histogram during fit of the components for sPlot");
379  }
380 
381  B2INFO("sPlot best yield " << best_yield);
382  B2INFO("sPlot Yields On MC " << binning.m_signal_yield << " " << binning.m_bckgrd_yield);
383 
384  binning.m_signal_yield = best_yield;
385  binning.m_bckgrd_yield = (total_data - best_yield);
386 
387  B2INFO("sPlot Yields Fitted On Data " << binning.m_signal_yield << " " << binning.m_bckgrd_yield);
388 
389  if (meta_options.m_splot_boosted) {
390  GeneralOptions boost_general_options = data_general_options;
391  boost_general_options.m_identifier = general_options.m_identifier + "_boost.xml";
392  SPlotDataset splot_dataset(boost_general_options, data_dataset, getBoostWeights(discriminant_dataset, binning), signalFraction);
393  auto boost_expert = teacher_dataset(boost_general_options, specific_options, splot_dataset);
394 
395  SPlotDataset aplot_dataset(data_general_options, data_dataset, getAPlotWeights(discriminant_dataset, binning,
396  boost_expert->apply(data_dataset)), signalFraction);
397  auto splot_expert = teacher_dataset(data_general_options, specific_options, aplot_dataset);
398  if (not meta_options.m_splot_combined)
399  return splot_expert;
400  } else {
401  SPlotDataset splot_dataset(data_general_options, data_dataset, getSPlotWeights(discriminant_dataset, binning), signalFraction);
402  auto splot_expert = teacher_dataset(data_general_options, specific_options, splot_dataset);
403  if (not meta_options.m_splot_combined)
404  return splot_expert;
405  }
406 
407  mc_general_options.m_identifier = general_options.m_identifier + "_pdf.xml";
408  mc_general_options.m_method = "PDF";
409  PDFOptions pdf_options;
410  // cppcheck-suppress unreadVariable
411  auto pdf_expert = teacher_dataset(mc_general_options, pdf_options, mc_dataset);
412 
413  GeneralOptions combination_general_options = general_options;
414  combination_general_options.m_method = "Combination";
415  combination_general_options.m_variables.push_back(meta_options.m_splot_variable);
416  CombinationOptions combination_options;
417  combination_options.m_weightfiles = {data_general_options.m_identifier, mc_general_options.m_identifier};
418  auto combination_expert = teacher_dataset(combination_general_options, combination_options, data_dataset);
419 
420  return combination_expert;
421 }
422 
423 std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_reweighting(const GeneralOptions& general_options,
424  const SpecificOptions& specific_options,
425  const MetaOptions& meta_options)
426 {
427  if (std::find(general_options.m_variables.begin(), general_options.m_variables.end(),
428  meta_options.m_reweighting_variable) != general_options.m_variables.end()) {
429  B2ERROR("You cannot use the reweighting variable as a feature in your training");
430  return nullptr;
431  }
432 
433  GeneralOptions data_general_options = general_options;
434  data_general_options.m_target_variable = "";
435  data_general_options.m_datafiles = meta_options.m_reweighting_data_files;
436  ROOTDataset data_dataset(data_general_options);
437 
438  GeneralOptions mc_general_options = general_options;
439  mc_general_options.m_datafiles = meta_options.m_reweighting_mc_files;
440  ROOTDataset mc_dataset(mc_general_options);
441 
442  CombinedDataset boost_dataset(general_options, data_dataset, mc_dataset);
443 
444  GeneralOptions boost_general_options = general_options;
445  boost_general_options.m_identifier = general_options.m_identifier + "_boost.xml";
446  // cppcheck-suppress unreadVariable
447  auto boost_expert = teacher_dataset(boost_general_options, specific_options, boost_dataset);
448 
449  GeneralOptions reweighter_general_options = general_options;
450  reweighter_general_options.m_identifier = meta_options.m_reweighting_identifier;
451  reweighter_general_options.m_method = "Reweighter";
452  ReweighterOptions reweighter_specific_options;
453  reweighter_specific_options.m_weightfile = boost_general_options.m_identifier;
454  reweighter_specific_options.m_variable = meta_options.m_reweighting_variable;
455 
456  if (meta_options.m_reweighting_variable != "") {
457  if (std::find(reweighter_general_options.m_spectators.begin(), reweighter_general_options.m_spectators.end(),
458  meta_options.m_reweighting_variable) == reweighter_general_options.m_spectators.end() and
459  std::find(reweighter_general_options.m_variables.begin(), reweighter_general_options.m_variables.end(),
460  meta_options.m_reweighting_variable) == reweighter_general_options.m_variables.end() and
461  reweighter_general_options.m_target_variable != meta_options.m_reweighting_variable and
462  reweighter_general_options.m_weight_variable != meta_options.m_reweighting_variable) {
463  reweighter_general_options.m_spectators.push_back(meta_options.m_reweighting_variable);
464  }
465  }
466 
467  ROOTDataset dataset(reweighter_general_options);
468  auto reweight_expert = teacher_dataset(reweighter_general_options, reweighter_specific_options, dataset);
469  auto weights = reweight_expert->apply(dataset);
470  ReweightingDataset reweighted_dataset(general_options, dataset, weights);
471  auto expertLocal = teacher_dataset(general_options, specific_options, reweighted_dataset);
472 
473  return expertLocal;
474 }
475 
476 std::unique_ptr<Belle2::MVA::Expert> Utility::teacher_sideband_subtraction(const GeneralOptions& general_options,
477  const SpecificOptions& specific_options,
478  const MetaOptions& meta_options)
479 {
480 
481  if (std::find(general_options.m_variables.begin(), general_options.m_variables.end(),
482  meta_options.m_sideband_variable) != general_options.m_variables.end()) {
483  B2ERROR("You cannot use the sideband variable as a feature in your training");
484  return nullptr;
485  }
486 
487  GeneralOptions data_general_options = general_options;
488  if (std::find(data_general_options.m_spectators.begin(), data_general_options.m_spectators.end(),
489  meta_options.m_sideband_variable) == data_general_options.m_spectators.end()) {
490  data_general_options.m_spectators.push_back(meta_options.m_sideband_variable);
491  }
492  ROOTDataset data_dataset(data_general_options);
493 
494  GeneralOptions mc_general_options = general_options;
495  mc_general_options.m_datafiles = meta_options.m_sideband_mc_files;
496  if (std::find(mc_general_options.m_spectators.begin(), mc_general_options.m_spectators.end(),
497  meta_options.m_sideband_variable) == mc_general_options.m_spectators.end()) {
498  mc_general_options.m_spectators.push_back(meta_options.m_sideband_variable);
499  }
500  ROOTDataset mc_dataset(mc_general_options);
501 
502  GeneralOptions sideband_general_options = general_options;
503  SidebandDataset sideband_dataset(sideband_general_options, data_dataset, mc_dataset, meta_options.m_sideband_variable);
504  auto expertLocal = teacher_dataset(general_options, specific_options, sideband_dataset);
505 
506  return expertLocal;
507 }
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
A class that describes the interval of experiments/runs for which an object in the database is valid.
static std::map< std::string, AbstractInterface * > getSupportedInterfaces()
Returns interfaces supported by the MVA Interface.
Definition: Interface.h:53
static void initSupportedInterfaces()
Static function which initliazes all supported interfaces, has to be called once before getSupportedI...
Definition: Interface.cc:45
Binning of a data distribution Provides PDF and CDF values of the distribution per bin.
Definition: Binning.h:27
std::vector< float > m_bckgrd_pdf
Background pdf of data distribution per bin.
Definition: Binning.h:58
std::vector< float > m_signal_pdf
Signal pdf of data distribution per bin.
Definition: Binning.h:56
std::vector< float > m_boundaries
Boundaries of data distribution, including minimum and maximum value as first and last boundary.
Definition: Binning.h:61
double m_bckgrd_yield
Background yield in data distribution.
Definition: Binning.h:54
double m_signal_yield
Signal yield in data distribution.
Definition: Binning.h:53
static Binning CreateEqualFrequency(const std::vector< float > &data, const std::vector< float > &weights, const std::vector< bool > &isSignal, unsigned int nBins)
Create an equal frequency (aka equal-statistics) binning.
Definition: Binning.cc:93
unsigned int getBin(float datapoint) const
Gets the bin corresponding to the given datapoint.
Definition: Binning.cc:34
Options for the Combination MVA method.
Definition: Combination.h:28
std::vector< std::string > m_weightfiles
Weightfiles of all methods we want to combine.
Definition: Combination.h:53
Wraps two other Datasets, one containing signal, the other background events Used by the reweighting ...
Definition: Dataset.h:294
Abstract base class of all Datasets given to the MVA interface The current event can always be access...
Definition: Dataset.h:33
virtual std::vector< bool > getSignals()
Returns all is Signals.
Definition: Dataset.cc:122
General options which are shared by all MVA trainings.
Definition: Options.h:62
std::vector< std::string > m_datafiles
Name of the datafiles containing the training data.
Definition: Options.h:84
std::vector< std::string > m_variables
Vector of all variables (branch names) used in the training.
Definition: Options.h:86
std::string m_weight_variable
Weight variable (branch name) defining the weights.
Definition: Options.h:91
std::vector< std::string > m_spectators
Vector of all spectators (branch names) used in the training.
Definition: Options.h:87
std::string m_method
Name of the MVA method to use.
Definition: Options.h:82
std::string m_target_variable
Target variable (branch name) defining the target.
Definition: Options.h:90
std::string m_identifier
Identifier containing the finished training.
Definition: Options.h:83
Meta Options which modify the underlying training by doing sPlot, Multiclass and HyperparameterSearch...
Definition: Options.h:111
Options for the PDF MVA method.
Definition: PDF.h:29
Proivdes a dataset from a ROOT file This is the usually used dataset providing training data to the m...
Definition: Dataset.h:349
virtual unsigned int getNumberOfEvents() const override
Returns the number of events in this dataset.
Definition: Dataset.h:371
virtual std::vector< float > getFeature(unsigned int iFeature) override
Returns all values of one feature in a std::vector<float>
Definition: Dataset.cc:429
virtual std::vector< float > getWeights() override
Returns all values of of the weights in a std::vector<float>
Definition: Dataset.cc:408
Options for the Reweighter MVA method.
Definition: Reweighter.h:28
std::string m_weightfile
Weightfile of the reweighting expert.
Definition: Reweighter.h:53
std::string m_variable
Variable which decides if the reweighter is applied or not.
Definition: Reweighter.h:54
Dataset for Reweighting Wraps a dataset and provides each data-point with a new weight.
Definition: DataDriven.h:29
Dataset for sPlot Wraps a dataset and provides each data-point twice, once as signal and once as back...
Definition: DataDriven.h:161
Dataset for Sideband Subtraction Wraps a dataset and provides each data-point with a new weight.
Definition: DataDriven.h:104
Specific Options, all method Options have to inherit from this class.
Definition: Options.h:98
static void expert(const std::vector< std::string > &filenames, const std::vector< std::string > &datafiles, const std::string &treename, const std::string &outputfile, int experiment=0, int run=0, int event=0, bool copy_target=true)
Convenience function applies experts on given data.
Definition: Utility.cc:137
static void upload_array(const std::vector< std::string > &filenames, const std::string &identifier, int exp1=0, int run1=0, int exp2=-1, int run2=-1)
Convenience function which uploads an array of weightfiles to the database.
Definition: Utility.cc:60
static void upload(const std::string &filename, const std::string &identifier, int exp1=0, int run1=0, int exp2=-1, int run2=-1)
Convenience function which uploads a given weightfile to the database.
Definition: Utility.cc:45
static void download(const std::string &identifier, const std::string &filename, int experiment=0, int run=0, int event=0)
Convenience function which downloads a given weightfile from the database.
Definition: Utility.cc:31
static std::unique_ptr< Belle2::MVA::Expert > teacher_sideband_subtraction(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options)
Performs a sideband subtraction training, convenience function.
Definition: Utility.cc:476
static std::unique_ptr< Belle2::MVA::Expert > teacher_reweighting(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options)
Performs a MC vs data pre-training and afterwards reweighted training, convenience function.
Definition: Utility.cc:423
static void teacher(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options=MetaOptions())
Convenience function which performs a training with the given options.
Definition: Utility.cc:252
static void extract(const std::string &filename, const std::string &directory)
Convenience function which extracts the expertise in a given weightfile into a temporary directory.
Definition: Utility.cc:82
static std::unique_ptr< Belle2::MVA::Expert > teacher_dataset(GeneralOptions general_options, const SpecificOptions &specific_options, Dataset &data)
Convenience function which performs a training on a dataset.
Definition: Utility.cc:281
static std::string info(const std::string &filename)
Print information about the classifier stored in the given weightfile.
Definition: Utility.cc:97
static void save_custom_weightfile(const GeneralOptions &general_options, const SpecificOptions &specific_options, const std::string &custom_weightfile, const std::string &output_identifier="")
Convenience function which saves a pre-existing weightfile in a mva package-compliant format.
Definition: Utility.cc:231
static std::unique_ptr< Belle2::MVA::Expert > teacher_splot(const GeneralOptions &general_options, const SpecificOptions &specific_options, const MetaOptions &meta_options)
Performs an splot training, convenience function.
Definition: Utility.cc:312
static bool available(const std::string &filename, int experiment=0, int run=0, int event=0)
Convenience function which checks if an experise is available.
Definition: Utility.cc:125
The Weightfile class serializes all information about a training into an xml tree.
Definition: Weightfile.h:38
void addFile(const std::string &identifier, const std::string &custom_weightfile)
Add a file (mostly a weightfile from a MVA library) to our Weightfile.
Definition: Weightfile.cc:113
static Weightfile loadFromXMLFile(const std::string &filename)
Static function which loads a Weightfile from a XML file.
Definition: Weightfile.cc:238
static void save(Weightfile &weightfile, const std::string &filename, const Belle2::IntervalOfValidity &iov=Belle2::IntervalOfValidity(0, 0, -1, -1))
Static function which saves a Weightfile to a file.
Definition: Weightfile.cc:152
static void saveToXMLFile(Weightfile &weightfile, const std::string &filename)
Static function which saves a Weightfile to a XML file.
Definition: Weightfile.cc:173
void addOptions(const Options &options)
Add an Option object to the xml tree.
Definition: Weightfile.cc:60
static Weightfile loadFromROOTFile(const std::string &filename)
Static function which loads a Weightfile from a ROOT file.
Definition: Weightfile.cc:215
static Weightfile load(const std::string &filename, const Belle2::EventMetaData &emd=Belle2::EventMetaData(0, 0, 0))
Static function which loads a Weightfile from a file or from the database.
Definition: Weightfile.cc:193
static Weightfile loadFromDatabase(const std::string &identifier, const Belle2::EventMetaData &emd=Belle2::EventMetaData(0, 0, 0))
Static function which loads a Weightfile from the basf2 condition database.
Definition: Weightfile.cc:279
static void saveToROOTFile(Weightfile &weightfile, const std::string &filename)
Static function which saves a Weightfile to a ROOT file.
Definition: Weightfile.cc:163
static void saveArrayToDatabase(const std::vector< Weightfile > &weightfiles, const std::string &identifier, const Belle2::IntervalOfValidity &iov=Belle2::IntervalOfValidity(0, 0, -1, -1))
Static function which saves an array of Weightfile objects in the basf2 condition database.
Definition: Weightfile.cc:265
static void saveToDatabase(Weightfile &weightfile, const std::string &identifier, const Belle2::IntervalOfValidity &iov=Belle2::IntervalOfValidity(0, 0, -1, -1))
Static function which saves a Weightfile in the basf2 condition database.
Definition: Weightfile.cc:256
static std::string makeROOTCompatible(std::string str)
Remove special characters that ROOT dislikes in branch names, e.g.