Belle II Software  light-2403-persian
BaseHardConstraint.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * Forked from https://github.com/iLCSoft/MarlinKinfit *
6  * *
7  * Further information about the fit engine and the user interface *
8  * provided in MarlinKinfit can be found at *
9  * https://www.desy.de/~blist/kinfit/doc/html/ *
10  * and in the LCNotes LC-TOOL-2009-001 and LC-TOOL-2009-004 available *
11  * from http://www-flc.desy.de/lcnotes/ *
12  * *
13  * See git log for contributors and copyright holders. *
14  * This file is licensed under LGPL-3.0, see LICENSE.md. *
15  **************************************************************************/
16 
17 #include "analysis/OrcaKinFit/BaseHardConstraint.h"
18 #include <framework/logging/Logger.h>
19 
20 #undef NDEBUG
21 #include <cassert>
22 
23 #include <cstring>
24 #include <iostream>
25 #include <cmath>
26 
27 namespace Belle2 {
32  namespace OrcaKinFit {
33 
35 
36 
37  void BaseHardConstraint::add1stDerivativesToMatrix(double* M, int idim) const
38  {
39  double dgdpi[BaseDefs::MAXINTERVARS];
40  for (unsigned int i = 0; i < fitobjects.size(); ++i) {
41  const BaseFitObject* foi = fitobjects[i];
42  assert(foi);
43  if (firstDerivatives(i, dgdpi)) {
44  foi->addTo1stDerivatives(M, idim, dgdpi, getGlobalNum(), getVarBasis());
45  }
46  }
47  }
48 
49 
76  void BaseHardConstraint::add2ndDerivativesToMatrix(double* M, int idim, double lambda) const
77  {
78 
85  // Derivatives \f$\frac{\partial ^2 g}{\partial P_i \partial P_j}\f$ at fixed i, j
86  // d2GdPidPj[4*ii+jj] is derivative w.r.t. P_i,ii and P_j,jj, where ii=0,1,2,3 for E,px,py,pz
87  double d2GdPidPj[BaseDefs::MAXINTERVARS * BaseDefs::MAXINTERVARS];
88 
89  // Derivatives \f$\frac {\partial P_i}{\partial a_k}\f$ for all i;
90  // k is local parameter number
91  // dPidAk[KMAX*4*i + 4*k + ii] is \f$\frac {\partial P_{i,ii}}{\partial a_k}\f$,
92  // with ii=0, 1, 2, 3 for E, px, py, pz
93  const int n = fitobjects.size();
94  auto* dPidAk = new double[n * BaseDefs::MAXPAR * BaseDefs::MAXINTERVARS];
95  bool* dPidAkval = new bool[n];
96 
97  for (int i = 0; i < n; ++i) dPidAkval[i] = false;
98 
99  // Derivatives \f$\frac{\partial ^2 g}{\partial P_i \partial a_l}\f$ at fixed i
100  // d2GdPdAl[4*l + ii] is \f$\frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l}\f$
101  double d2GdPdAl[static_cast<int>(BaseDefs::MAXINTERVARS) * BaseDefs::MAXPAR];
102  // Derivatives \f$\frac{\partial ^2 g}{\partial a_k \partial a_l}\f$
103  double d2GdAkdAl[BaseDefs::MAXPAR * BaseDefs::MAXPAR] = {0};
104 
105  // Global parameter numbers: parglobal[BaseDefs::MAXPAR*i+klocal]
106  // is global parameter number of local parameter klocal of i-th Fit object
107  int* parglobal = new int[BaseDefs::MAXPAR * n];
108 
109  for (int i = 0; i < n; ++i) {
110  const BaseFitObject* foi = fitobjects[i];
111  assert(foi);
112  for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
113  parglobal [BaseDefs::MAXPAR * i + klocal] = foi->getGlobalParNum(klocal);
114  }
115  }
116 
117 
118  for (int i = 0; i < n; ++i) {
119  const BaseFitObject* foi = fitobjects[i];
120  assert(foi);
121  for (int j = 0; j < n; ++j) {
122  const BaseFitObject* foj = fitobjects[j];
123  assert(foj);
124  if (secondDerivatives(i, j, d2GdPidPj)) {
125  if (!dPidAkval[i]) {
126  foi->getDerivatives(dPidAk + i * (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS),
127  static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS);
128  dPidAkval[i] = true;
129  }
130  if (!dPidAkval[j]) {
131  foj->getDerivatives(dPidAk + j * (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS),
132  static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS);
133  dPidAkval[j] = true;
134  }
135  // Now sum over E/px/Py/Pz for object j:
136  // \f[
137  // \frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l}
138  // = (sum_{j}) sum_{jj} frac{\partial ^2 g}{\partial P_{i,ii} \partial P_{j,jj}}
139  // \cdot \frac{\partial P_{j,jj}}{\partial a_l}
140  // \f]
141  // We're summing over jj here
142  for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
143  for (int ii = 0; ii < BaseDefs::MAXINTERVARS; ++ii) {
144  int ind1 = BaseDefs::MAXINTERVARS * ii;
145  int ind2 = (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS) * j + BaseDefs::MAXINTERVARS * llocal;
146  double& r = d2GdPdAl[BaseDefs::MAXINTERVARS * llocal + ii];
147  r = d2GdPidPj[ ind1] * dPidAk[ ind2]; // E
148  r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // px
149  r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // py
150  r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // pz
151  }
152  }
153  // Now sum over E/px/Py/Pz for object i, i.e. sum over ii:
154  // \f[
155  // \frac{\partial ^2 g}{\partial a_k \partial a_l}
156  // = \sum_{ii} \frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l} \cdot
157  // \frac{\partial P_{i,ii}}{\partial a_k}
158  // \f]
159  for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
160  for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
161  int ind1 = BaseDefs::MAXINTERVARS * llocal;
162  int ind2 = (static_cast<int>(BaseDefs::MAXPAR) * BaseDefs::MAXINTERVARS) * i + BaseDefs::MAXINTERVARS * klocal;
163  double& r = d2GdAkdAl[BaseDefs::MAXPAR * klocal + llocal];
164  r = d2GdPdAl[ ind1] * dPidAk[ ind2]; //E
165  r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // px
166  r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // py
167  r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // pz
168  }
169  }
170  // Now expand the local parameter numbers to global ones
171  for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
172  int kglobal = parglobal [BaseDefs::MAXPAR * i + klocal];
173  for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
174  int lglobal = parglobal [BaseDefs::MAXPAR * j + llocal];
175  M [idim * kglobal + lglobal] += lambda * d2GdAkdAl[BaseDefs::MAXPAR * klocal + llocal];
176  }
177  }
178  }
179  }
180  }
190  double dgdpi[BaseDefs::MAXINTERVARS];
191  for (int i = 0; i < n; ++i) {
192  const BaseFitObject* foi = fitobjects[i];
193  assert(foi);
194  if (firstDerivatives(i, dgdpi)) {
195  foi->addTo2ndDerivatives(M, idim, lambda, dgdpi, getVarBasis());
196  }
197  }
198 
199  delete[] dPidAk;
200  delete[] dPidAkval;
201  delete[] parglobal;
202  }
203 
204  void BaseHardConstraint::addToGlobalChi2DerVector(double* y, int idim, double lambda) const
205  {
206  double dgdpi[BaseDefs::MAXINTERVARS];
207  for (unsigned int i = 0; i < fitobjects.size(); ++i) {
208  const BaseFitObject* foi = fitobjects[i];
209  assert(foi);
210  if (firstDerivatives(i, dgdpi)) {
211  foi->addToGlobalChi2DerVector(y, idim, lambda, dgdpi, getVarBasis());
212  }
213  }
214  }
215 
216 
218  {
219  double dgdpi[BaseDefs::MAXINTERVARS];
220  double error2 = 0;
221  for (unsigned int i = 0; i < fitobjects.size(); ++i) {
222  const BaseFitObject* foi = fitobjects[i];
223  assert(foi);
224  if (firstDerivatives(i, dgdpi)) {
225  error2 += foi->getError2(dgdpi, getVarBasis());
226  }
227  }
228  return std::sqrt(std::abs(error2));
229  }
230 
231 
232  double BaseHardConstraint::dirDer(double* p, double* w, int idim, double mu)
233  {
234  double* pw, *pp;
235  for (pw = w; pw < w + idim; * (pw++) = 0);
236  addToGlobalChi2DerVector(w, idim, mu);
237  double result = 0;
238  for (pw = w, pp = p; pw < w + idim; result += *(pp++) * *(pw++));
239  return mu * result;
240  }
241 
242  double BaseHardConstraint::dirDerAbs(double* p, double* w, int idim, double mu)
243  {
244  double val = getValue();
245  if (val == 0) return mu * std::fabs(dirDer(p, w, idim, 1));
246  else if (val > 0) return mu * dirDer(p, w, idim, 1);
247  else return -mu * dirDer(p, w, idim, 1);
248  }
249 
250 
251  void BaseHardConstraint::test1stDerivatives()
252  {
253  B2INFO("BaseConstraint::test1stDerivatives for " << getName());
254  double y[100];
255  for (double& i : y) i = 0;
256  addToGlobalChi2DerVector(y, 100, 1);
257  double eps = 0.00001;
258  for (unsigned int ifo = 0; ifo < fitobjects.size(); ++ifo) {
259  BaseFitObject* fo = fitobjects[ifo];
260  assert(fo);
261  for (int ilocal = 0; ilocal < fo->getNPar(); ++ilocal) {
262  int iglobal = fo->getGlobalParNum(ilocal);
263  double calc = y[iglobal];
264  double num = num1stDerivative(ifo, ilocal, eps);
265  B2INFO("fo: " << fo->getName() << " par " << ilocal << "/"
266  << iglobal << " (" << fo->getParamName(ilocal)
267  << ") calc: " << calc << " - num: " << num << " = " << calc - num);
268  }
269  }
270  }
271 
272  void BaseHardConstraint::test2ndDerivatives()
273  {
274  B2INFO("BaseConstraint::test2ndDerivatives for " << getName());
275  const int idim = 100;
276  auto* M = new double[idim * idim];
277  for (int i = 0; i < idim * idim; ++i) M[i] = 0;
278  add2ndDerivativesToMatrix(M, idim, 1);
279  double eps = 0.0001;
280  B2INFO("eps=" << eps);
281 
282  for (unsigned int ifo1 = 0; ifo1 < fitobjects.size(); ++ifo1) {
283  BaseFitObject* fo1 = fitobjects[ifo1];
284  assert(fo1);
285  for (unsigned int ifo2 = ifo1; ifo2 < fitobjects.size(); ++ifo2) {
286  BaseFitObject* fo2 = fitobjects[ifo2];
287  assert(fo2);
288  for (int ilocal1 = 0; ilocal1 < fo1->getNPar(); ++ilocal1) {
289  int iglobal1 = fo1->getGlobalParNum(ilocal1);
290  for (int ilocal2 = (ifo1 == ifo2 ? ilocal1 : 0); ilocal2 < fo2->getNPar(); ++ilocal2) {
291  int iglobal2 = fo2->getGlobalParNum(ilocal2);
292  double calc = M[idim * iglobal1 + iglobal2];
293  double num = num2ndDerivative(ifo1, ilocal1, eps, ifo2, ilocal2, eps);
294  B2INFO("fo1: " << fo1->getName() << " par " << ilocal1 << "/"
295  << iglobal1 << " (" << fo1->getParamName(ilocal1)
296  << "), fo2: " << fo2->getName() << " par " << ilocal2 << "/"
297  << iglobal2 << " (" << fo2->getParamName(ilocal2)
298  << ") calc: " << calc << " - num: " << num << " = " << calc - num);
299  }
300  }
301  }
302  }
303  delete[] M;
304  }
305 
306 
307  double BaseHardConstraint::num1stDerivative(int ifo, int ilocal, double eps)
308  {
309  BaseFitObject* fo = fitobjects[ifo];
310  assert(fo);
311  double save = fo->getParam(ilocal);
312  fo->setParam(ilocal, save + eps);
313  double v1 = getValue();
314  fo->setParam(ilocal, save - eps);
315  double v2 = getValue();
316  double result = (v1 - v2) / (2 * eps);
317  fo->setParam(ilocal, save);
318  return result;
319  }
320 
321  double BaseHardConstraint::num2ndDerivative(int ifo1, int ilocal1, double eps1,
322  int ifo2, int ilocal2, double eps2)
323  {
324  double result;
325 
326  if (ifo1 == ifo2 && ilocal1 == ilocal2) {
327  BaseFitObject* fo = fitobjects[ifo1];
328  assert(fo);
329  double save = fo->getParam(ilocal1);
330  double v0 = getValue();
331  fo->setParam(ilocal1, save + eps1);
332  double v1 = getValue();
333  fo->setParam(ilocal1, save - eps1);
334  double v2 = getValue();
335  result = (v1 + v2 - 2 * v0) / (eps1 * eps1);
336  fo->setParam(ilocal1, save);
337  } else {
338  BaseFitObject* fo1 = fitobjects[ifo1];
339  assert(fo1);
340  BaseFitObject* fo2 = fitobjects[ifo2];
341  assert(fo2);
342  double save1 = fo1->getParam(ilocal1);
343  double save2 = fo2->getParam(ilocal2);
344  fo1->setParam(ilocal1, save1 + eps1);
345  fo2->setParam(ilocal2, save2 + eps2);
346  double v11 = getValue();
347  fo2->setParam(ilocal2, save2 - eps2);
348  double v12 = getValue();
349  fo1->setParam(ilocal1, save1 - eps1);
350  double v22 = getValue();
351  fo2->setParam(ilocal2, save2 + eps2);
352  double v21 = getValue();
353  result = (v11 + v22 - v12 - v21) / (4 * eps1 * eps2);
354  fo1->setParam(ilocal1, save1);
355  fo2->setParam(ilocal2, save2);
356  }
357  return result;
358  }
359 
360  void BaseHardConstraint::printFirstDerivatives() const
361  {
362 
363  B2INFO("BaseHardConstraint::printFirstDerivatives " << fitobjects.size());
364 
365  double dgdpi[BaseDefs::MAXINTERVARS];
366  for (unsigned int i = 0; i < fitobjects.size(); ++i) {
367  const BaseFitObject* foi = fitobjects[i];
368  assert(foi);
369  if (firstDerivatives(i, dgdpi)) {
370  B2INFO("first derivs for obj " << i << " : ");
371  for (double j : dgdpi)
372  B2INFO(j << " ");
373  }
374  }
375 
376  return;
377  }
378 
379  void BaseHardConstraint::printSecondDerivatives() const
380  {
381 
382  double d2GdPidPj[BaseDefs::MAXINTERVARS * BaseDefs::MAXINTERVARS];
383 
384  int n = fitobjects.size();
385 
386  for (int i = 0; i < n; ++i) {
387  const BaseFitObject* foi = fitobjects[i];
388  assert(foi);
389  for (int j = 0; j < n; ++j) {
390  const BaseFitObject* foj = fitobjects[j];
391  assert(foj);
392  if (secondDerivatives(i, j, d2GdPidPj)) {
393 
394  B2INFO("second derivs for objs " << i << " " << j);
395 
396  int k(0);
397  for (int k1 = 0; k1 < BaseDefs::MAXINTERVARS; k1++) {
398  for (int k2 = 0; k2 < BaseDefs::MAXINTERVARS; k2++) {
399  B2INFO(d2GdPidPj[k++] << " ");
400  }
401  }
402  }
403  }
404  }
405 
406  return;
407  }
408 
409  }// end OrcaKinFit namespace
411 } // end Belle2 namespace
virtual const char * getName() const
Returns the name of the constraint.
virtual int getNPar() const =0
Get total number of parameters of this FitObject.
virtual const char * getParamName(int ilocal) const =0
Get name of parameter ilocal.
virtual bool setParam(int ilocal, double par_, bool measured_, bool fixed_=false)
Set value and measured flag of parameter i; return: significant change.
virtual int getGlobalParNum(int ilocal) const
Get global parameter number of parameter ilocal.
virtual const char * getName() const
Get object's name.
virtual double getParam(int ilocal) const
Get current value of parameter ilocal.
virtual int addToGlobalChi2DerVector(double *y, int idim) const
Add derivatives of chi squared to global derivative vector.
virtual ~BaseHardConstraint()
Virtual destructor.
virtual int getGlobalNum() const
Accesses position of constraint in global constraint list.
virtual double getValue() const override=0
Returns the value of the constraint.
FitObjectContainer fitobjects
The FitObjectContainer.
virtual void add1stDerivativesToMatrix(double *M, int idim) const
Adds first order derivatives to global covariance matrix M.
virtual double getError() const override
Returns the error on the value of the constraint.
virtual void addToGlobalChi2DerVector(double *y, int idim, double lambda) const
Add lambda times derivatives of chi squared to global derivative vector.
virtual double dirDerAbs(double *p, double *w, int idim, double mu=1)
Calculate directional derivative for abs(c)
virtual double dirDer(double *p, double *w, int idim, double mu=1)
Calculate directional derivative.
virtual bool secondDerivatives(int i, int j, double *derivatives) const =0
Second derivatives with respect to the meta-variables of Fit objects i and j; result false if all der...
virtual bool firstDerivatives(int i, double *derivatives) const =0
First derivatives with respect to the meta-variables of Fit objects i; result false if all derivative...
virtual void add2ndDerivativesToMatrix(double *M, int idim, double lambda) const
Adds second order derivatives to global covariance matrix M.
virtual double num2ndDerivative(int ifo1, int ilocal1, double eps1, int ifo2, int ilocal2, double eps2)
Evaluates numerically the 2nd derivative w.r.t. 2 parameters.
virtual double num1stDerivative(int ifo, int ilocal, double eps)
Evaluates numerically the 1st derivative w.r.t. a parameter.
Abstract base class for different kinds of events.
Definition: ClusterUtils.h:24